Android stduio NDK开发


前言

本文的目标是在Android studio中进行NDK的开发。示例是在main activity中显示一个字符串,而字符串的内容是来自于一个C函数。归结于一句话:NDK是为了让上层的java应用能够调用底层的c/c++而设计的。马上进入主题。

创建工程

创建一个名为jniDemo的blank activity工程,activity名为MyActivity,在MyActivity类的最后声明一个方法,这个方法会在C函数中去实现,如下图所示,

drawing

jni部分

设置ndk路径,打开local.properties,增加

ndk.dir=/home/djstava/Workshop/Android/android-studio/ndk 

点击android studio左下角的Terminal

cd src/main

javah -d jni -classpath ~/Workshop/Android/android-studio/sdk/platforms/android-4.4.2/android.jar:../../build/intermediates/classes/debug/ com.example.djstava.jnidemo.MyActivity 

参数意义:

-d 输出目录,jni是gradle默认的路径    
-classpath jar的路径,经常碰到的找不到activity的类的错误一般是由这个引起的    
com.example.djstava.jnidemo.MyActivity 包名+activity 

这条命令执行完毕后,会在src/main下生成jni目录,并产生头文件com_example_djstava_jnidemo_MyActivity.h,其内容为

/* DO NOT EDIT THIS FILE - it is machine generated */
#include 
/* Header for class com_example_djstava_jnidemo_MyActivity */

#ifndef _Included_com_example_djstava_jnidemo_MyActivity
#define _Included_com_example_djstava_jnidemo_MyActivity
#ifdef __cplusplus
extern "C" {
#endif
#undef com_example_djstava_jnidemo_MyActivity_MODE_PRIVATE
#define com_example_djstava_jnidemo_MyActivity_MODE_PRIVATE 0L
#undef com_example_djstava_jnidemo_MyActivity_MODE_WORLD_READABLE
#define com_example_djstava_jnidemo_MyActivity_MODE_WORLD_READABLE 1L
#undef com_example_djstava_jnidemo_MyActivity_MODE_WORLD_WRITEABLE
#define com_example_djstava_jnidemo_MyActivity_MODE_WORLD_WRITEABLE 2L
#undef com_example_djstava_jnidemo_MyActivity_MODE_APPEND
#define com_example_djstava_jnidemo_MyActivity_MODE_APPEND 32768L
#undef com_example_djstava_jnidemo_MyActivity_MODE_MULTI_PROCESS
#define com_example_djstava_jnidemo_MyActivity_MODE_MULTI_PROCESS 4L
#undef com_example_djstava_jnidemo_MyActivity_MODE_ENABLE_WRITE_AHEAD_LOGGING
#define com_example_djstava_jnidemo_MyActivity_MODE_ENABLE_WRITE_AHEAD_LOGGING 8L
#undef com_example_djstava_jnidemo_MyActivity_BIND_AUTO_CREATE
#define com_example_djstava_jnidemo_MyActivity_BIND_AUTO_CREATE 1L
#undef com_example_djstava_jnidemo_MyActivity_BIND_DEBUG_UNBIND
#define com_example_djstava_jnidemo_MyActivity_BIND_DEBUG_UNBIND 2L
#undef com_example_djstava_jnidemo_MyActivity_BIND_NOT_FOREGROUND
#define com_example_djstava_jnidemo_MyActivity_BIND_NOT_FOREGROUND 4L
#undef com_example_djstava_jnidemo_MyActivity_BIND_ABOVE_CLIENT
#define com_example_djstava_jnidemo_MyActivity_BIND_ABOVE_CLIENT 8L
#undef com_example_djstava_jnidemo_MyActivity_BIND_ALLOW_OOM_MANAGEMENT
#define com_example_djstava_jnidemo_MyActivity_BIND_ALLOW_OOM_MANAGEMENT 16L
#undef com_example_djstava_jnidemo_MyActivity_BIND_WAIVE_PRIORITY
#define com_example_djstava_jnidemo_MyActivity_BIND_WAIVE_PRIORITY 32L
#undef com_example_djstava_jnidemo_MyActivity_BIND_IMPORTANT
#define com_example_djstava_jnidemo_MyActivity_BIND_IMPORTANT 64L
#undef com_example_djstava_jnidemo_MyActivity_BIND_ADJUST_WITH_ACTIVITY
#define com_example_djstava_jnidemo_MyActivity_BIND_ADJUST_WITH_ACTIVITY 128L
#undef com_example_djstava_jnidemo_MyActivity_CONTEXT_INCLUDE_CODE
#define com_example_djstava_jnidemo_MyActivity_CONTEXT_INCLUDE_CODE 1L
#undef com_example_djstava_jnidemo_MyActivity_CONTEXT_IGNORE_SECURITY
#define com_example_djstava_jnidemo_MyActivity_CONTEXT_IGNORE_SECURITY 2L
#undef com_example_djstava_jnidemo_MyActivity_CONTEXT_RESTRICTED
#define com_example_djstava_jnidemo_MyActivity_CONTEXT_RESTRICTED 4L
#undef com_example_djstava_jnidemo_MyActivity_RESULT_CANCELED
#define com_example_djstava_jnidemo_MyActivity_RESULT_CANCELED 0L
#undef com_example_djstava_jnidemo_MyActivity_RESULT_OK
#define com_example_djstava_jnidemo_MyActivity_RESULT_OK -1L
#undef com_example_djstava_jnidemo_MyActivity_RESULT_FIRST_USER
#define com_example_djstava_jnidemo_MyActivity_RESULT_FIRST_USER 1L
#undef com_example_djstava_jnidemo_MyActivity_DEFAULT_KEYS_DISABLE
#define com_example_djstava_jnidemo_MyActivity_DEFAULT_KEYS_DISABLE 0L
#undef com_example_djstava_jnidemo_MyActivity_DEFAULT_KEYS_DIALER
#define com_example_djstava_jnidemo_MyActivity_DEFAULT_KEYS_DIALER 1L
#undef com_example_djstava_jnidemo_MyActivity_DEFAULT_KEYS_SHORTCUT
#define com_example_djstava_jnidemo_MyActivity_DEFAULT_KEYS_SHORTCUT 2L
#undef com_example_djstava_jnidemo_MyActivity_DEFAULT_KEYS_SEARCH_LOCAL
#define com_example_djstava_jnidemo_MyActivity_DEFAULT_KEYS_SEARCH_LOCAL 3L
#undef com_example_djstava_jnidemo_MyActivity_DEFAULT_KEYS_SEARCH_GLOBAL
#define com_example_djstava_jnidemo_MyActivity_DEFAULT_KEYS_SEARCH_GLOBAL 4L
/*
* Class:     com_example_djstava_jnidemo_MyActivity
* Method:    getStringFromJNI
* Signature: ()Ljava/lang/String;
*/
JNIEXPORT jstring JNICALL Java_com_example_djstava_jnidemo_MyActivity_getStringFromJNI
(JNIEnv *, jobject);

#ifdef __cplusplus
}
#endif
#endif 

根据产生的头文件,在同级目录创建C源文件,内容如下

/* DO NOT EDIT THIS FILE - it is machine generated */
#include 
/* Header for class com_example_djstava_jnidemo_MyActivity */

/*
* Class:     com_example_djstava_jnidemo_MyActivity
* Method:    getStringFromJNI
* Signature: ()Ljava/lang/String;
*/
JNIEXPORT jstring JNICALL Java_com_example_djstava_jnidemo_MyActivity_getStringFromJNI
(JNIEnv *env, jobject obj)
{
    return (*env)->NewStringUTF(env,"Hello android from jni!");
} 

gradle配置

打开build.gradle,在defaultConfig设置项内添加

ndk {
    moduleName "jniLib" //这是模块名称,在加载时会被用到
} 

在defaultConfig设置项后面添加

flavorGroups "abi"

productFlavors {
    x86 {
        ndk {
            abiFilter "x86"
        }
    }
    arm {
        ndk {
            abiFilter "armeabi-v7a"
        }
    }
    mips {
        ndk {
            abiFilter "mips"
        }
    }
} 

在MyActivity中加载jni模块

修改activity_my.xml

添加textView的id

android:id="@+id/jni_text" 
AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
AI实战-信用卡申请风险识别数据集分析预测实例(含9个源代码+91.57 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:9个代码,共44.98 KB;数据大小:1个文件共91.57 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn wordcloud.WordCloud sklearn.model_selection.train_test_split sklearn.preprocessing.LabelEncoder sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.classification_report sklearn.metrics.confusion_matrix plotly.express plotly.subplots.make_subplots plotly.graph_objects plotly.io sklearn.base.BaseEstimator sklearn.base.TransformerMixin sklearn.preprocessing.StandardScaler sklearn.preprocessing.OrdinalEncoder sklearn.pipeline.make_pipeline sklearn.compose.make_column_transformer imblearn.over_sampling.RandomOverSampler sklearn.svm.SVC sklearn.tree.DecisionTreeClassifier sklearn.ensemble.HistGradientBoostingClassifier sklearn.ensemble.GradientBoostingClassifier sklearn.neighbors.KNeighborsClassifier sklearn.model_selection.GridSearchCV sklearn.ensemble.VotingClassifier torch lightning torchmetrics.Accuracy torch.utils.data.Dataset torch.utils.data.DataLoader numpy warnings matplotlib wordcloud.STOPWORDS collections.Counter sklearn.ensemble.ExtraTreesClassifier sklearn.ensemble.AdaBoostClassifier sklearn.ensemble.BaggingClassifier xgboost.XGBClassifier lightgbm.LGBMClassifier catboost.CatBoostClassifier sklearn.linear_model.LogisticRegression sklearn.model_selection.RandomizedSearchCV sklearn.preprocessing.MinMaxScaler imblearn.over_sampling.SMOTE
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值