Power Network
Time Limit: 2000MS | Memory Limit: 32768K | |
Total Submissions: 27596 | Accepted: 14344 |
Description
A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= p
max(u) of power, may consume an amount 0 <= c(u) <= min(s(u),c
max(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= l
max(u,v) of power delivered by u to v. Let Con=Σ
uc(u) be the power consumed in the net. The problem is to compute the maximum value of Con.
An example is in figure 1. The label x/y of power station u shows that p(u)=x and p max(u)=y. The label x/y of consumer u shows that c(u)=x and c max(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and l max(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6.
An example is in figure 1. The label x/y of power station u shows that p(u)=x and p max(u)=y. The label x/y of consumer u shows that c(u)=x and c max(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and l max(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6.
Input
There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of l
max(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of p
max(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of c
max(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input. Input data terminate with an end of file and are correct.
Output
For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.
Sample Input
2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20 7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7 (3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5 (0)5 (1)2 (3)2 (4)1 (5)4
Sample Output
15 6
Hint
The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The second data set encodes the network from figure 1.
//#include <iostream>
//#include<cstring>
//#include<queue>
//#include<cstdio>
//using namespace std;
//#define inf 0x3f3f3f3f
//#define maxn 10
//int p[maxn][maxn],pre[maxn],vis[maxn];
//queue<int>q;
//void add(int u,int v,int w)
//{
// p[u][v]+=w;
//}
//int bfs(int s,int t,int n)
//{
// int u,i,min1=inf;
// memset(vis,0,sizeof(vis));
// vis[s]=1;
// while(!q.empty())
// q.pop();
// q.push(s);
// while(!q.empty())
// {
// u=q.front();
// q.pop();
// if(u==t)
// break;
// for(i=0;i<=n;i++)
// {
// if(!vis[i]&&p[u][i])
// {
// pre[i]=u;
// vis[i]=1;
// q.push(i);
// }
// }
// }
// if(vis[t])
// {
// for(i=t;pre[i]!=-1;i=pre[i])
// if(p[pre[i]][i]<min1)
// min1=p[pre[i]][i];
// return min1;
// }
// return -1;
//}
//int main()
//{
// int n,np,nc,m,u,v,w,max_flow,i,j;
// char str[10];
// while(~scanf("%d%d%d%d",&n,&np,&nc,&m))
// {
// max_flow=0;
// memset(p,0,sizeof(p));
// while(m--)
// {
// scanf("%s",str);
// sscanf(str,"(%d,%d)%d",&u,&v,&w);
// add(u,v,w);
// }
// while(np--)
// {
// scanf("%s",str);
// sscanf(str,"(%d)%d",&v,&w);
// add(n,v,w);
// }
// while(nc--)
// {
// scanf("%s",str);
// sscanf(str,"(%d)%d",&u,&w);
// add(u,n+1,w);
// }
// memset(pre,-1,sizeof(pre));
// while(1)
// {
// int k=bfs(n,n+1,n+1);
// if(k==-1)
// break;
// max_flow+=k;
// j=n+1;
// for(i=pre[n+1];i!=-1;i=pre[i])
// {
// p[i][j]-=k;
// p[j][i]+=k;
// j=i;
// }
// }
// printf("%d\n",max_flow);
// }
// return 0;
//}
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#define inf 0x3f3f3f3f
using namespace std;
const int N=201;
int n,m,np,nc,a,b,c;
int start,End;
int Map[N][N]; // 额定最大容量;
int path[N]; // 传输的路径;
int flow[N]; // 当前该条路径可传输的流量;
int bfs()// 广搜,寻找可行路劲;
{
queue<int>q;
memset(path,-1,sizeof(path));
path[start]=0,flow[start]=inf;
q.push(start);
while(!q.empty())
{
int t=q.front();
q.pop();
if(t==End) break;
for(int i=1;i<=n;i++)
{
if(i!=start&&path[i]==-1&&Map[t][i])
{
flow[i]=flow[t]>Map[t][i]?Map[t][i]:flow[t];
q.push(i);
path[i]=t;
}
}
}
if(path[End]==-1) return -1;// 表示没有找到可行路径
else return flow[End];
}
int Edmonds_Karp()
{ // 对每条路径增加反向边;
int max_flow=0,step,now,pre;
while((step=bfs())!=-1)
{// 每找到一条可行路径,更新最大流以及他的反向边;
max_flow+=step;
now=End;
while(now!=start){
pre=path[now];
Map[pre][now]-=step;
Map[now][pre]+=step;
now=pre;
}
}
return max_flow;
}
int main()
{
cin.sync_with_stdio(false);
while(cin>>n>>np>>nc>>m)
{
memset(Map,0,sizeof(Map));
char d;
for(int i=0;i<m;i++)
{
cin>>d>>a>>d>>b>>d>>c;
Map[a+1][b+1]=c;
}
int tmp=n+1; // 超级汇点;
n+=2; // 总节点数U;
m+=(np+nc);// 总边数V;
for(int i=0;i<np;i++)
{
cin>>d>>a>>d>>b;
Map[0][a+1]=b;
}
for(int i=0;i<nc;i++)
{
cin>>d>>a>>d>>b;
Map[a+1][tmp]=b;
}
start=0,End=tmp;
cout<<Edmonds_Karp()<<endl;
}
}
//#include<cstring>
//#include<queue>
//#include<cstdio>
//using namespace std;
//#define inf 0x3f3f3f3f
//#define maxn 10
//int p[maxn][maxn],pre[maxn],vis[maxn];
//queue<int>q;
//void add(int u,int v,int w)
//{
// p[u][v]+=w;
//}
//int bfs(int s,int t,int n)
//{
// int u,i,min1=inf;
// memset(vis,0,sizeof(vis));
// vis[s]=1;
// while(!q.empty())
// q.pop();
// q.push(s);
// while(!q.empty())
// {
// u=q.front();
// q.pop();
// if(u==t)
// break;
// for(i=0;i<=n;i++)
// {
// if(!vis[i]&&p[u][i])
// {
// pre[i]=u;
// vis[i]=1;
// q.push(i);
// }
// }
// }
// if(vis[t])
// {
// for(i=t;pre[i]!=-1;i=pre[i])
// if(p[pre[i]][i]<min1)
// min1=p[pre[i]][i];
// return min1;
// }
// return -1;
//}
//int main()
//{
// int n,np,nc,m,u,v,w,max_flow,i,j;
// char str[10];
// while(~scanf("%d%d%d%d",&n,&np,&nc,&m))
// {
// max_flow=0;
// memset(p,0,sizeof(p));
// while(m--)
// {
// scanf("%s",str);
// sscanf(str,"(%d,%d)%d",&u,&v,&w);
// add(u,v,w);
// }
// while(np--)
// {
// scanf("%s",str);
// sscanf(str,"(%d)%d",&v,&w);
// add(n,v,w);
// }
// while(nc--)
// {
// scanf("%s",str);
// sscanf(str,"(%d)%d",&u,&w);
// add(u,n+1,w);
// }
// memset(pre,-1,sizeof(pre));
// while(1)
// {
// int k=bfs(n,n+1,n+1);
// if(k==-1)
// break;
// max_flow+=k;
// j=n+1;
// for(i=pre[n+1];i!=-1;i=pre[i])
// {
// p[i][j]-=k;
// p[j][i]+=k;
// j=i;
// }
// }
// printf("%d\n",max_flow);
// }
// return 0;
//}
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#define inf 0x3f3f3f3f
using namespace std;
const int N=201;
int n,m,np,nc,a,b,c;
int start,End;
int Map[N][N]; // 额定最大容量;
int path[N]; // 传输的路径;
int flow[N]; // 当前该条路径可传输的流量;
int bfs()// 广搜,寻找可行路劲;
{
queue<int>q;
memset(path,-1,sizeof(path));
path[start]=0,flow[start]=inf;
q.push(start);
while(!q.empty())
{
int t=q.front();
q.pop();
if(t==End) break;
for(int i=1;i<=n;i++)
{
if(i!=start&&path[i]==-1&&Map[t][i])
{
flow[i]=flow[t]>Map[t][i]?Map[t][i]:flow[t];
q.push(i);
path[i]=t;
}
}
}
if(path[End]==-1) return -1;// 表示没有找到可行路径
else return flow[End];
}
int Edmonds_Karp()
{ // 对每条路径增加反向边;
int max_flow=0,step,now,pre;
while((step=bfs())!=-1)
{// 每找到一条可行路径,更新最大流以及他的反向边;
max_flow+=step;
now=End;
while(now!=start){
pre=path[now];
Map[pre][now]-=step;
Map[now][pre]+=step;
now=pre;
}
}
return max_flow;
}
int main()
{
cin.sync_with_stdio(false);
while(cin>>n>>np>>nc>>m)
{
memset(Map,0,sizeof(Map));
char d;
for(int i=0;i<m;i++)
{
cin>>d>>a>>d>>b>>d>>c;
Map[a+1][b+1]=c;
}
int tmp=n+1; // 超级汇点;
n+=2; // 总节点数U;
m+=(np+nc);// 总边数V;
for(int i=0;i<np;i++)
{
cin>>d>>a>>d>>b;
Map[0][a+1]=b;
}
for(int i=0;i<nc;i++)
{
cin>>d>>a>>d>>b;
Map[a+1][tmp]=b;
}
start=0,End=tmp;
cout<<Edmonds_Karp()<<endl;
}
}
直接套用最大流的模板的,主要是建图的过程。
输入分别为m个点,a个发电站,b个用户,n条边;接下去是n条边的信息(u,v)cost,cost表示边(u,v)的最大流量;a个发电站的信息(u)cost,cost表示发电站u能提供的最大流量;b个用户的信息(v)cost,cost表示每个用户v能接受的最大流量。
典型的最大网络流中多源多汇的问题,在图中添加1个源点S和汇点T,将S和每个发电站相连,边的权值是发电站能提供的最大流量;将每个用户和T相连,边的权值是每个用户能接受的最大流量。从而转化成了一般的最大网络流问题,然后求解。
map[i][j]记录的就是i->j可以增加的流量
bfs
#include<stdio.h>
#include<queue>
#include<string.h>
#define maxn 1000
#define inf 0x7fffffff
using namespace std;
queue<int>q;
int map[maxn][maxn],path[maxn],flow[maxn];
int n,np,nc,m,s,e;
int bfs()
{
while(!q.empty())q.pop();
memset(path,-1,sizeof(path));
memset(flow,0,sizeof(flow));//其实这里清空和不清空没区别 ,应为每一次都是由前面的flow得到后面的flow
path[s]=1;
flow[s]=inf;
q.push(s);
while(!q.empty())
{
int k=q.front();
q.pop();
if(k==e)break;
for(int i=0;i<=n;i++)
{
if(i!=s&&path[i]==-1&&map[k][i])
{
flow[i]=flow[k]<map[k][i]?flow[k]:map[k][i];
path[i]=k;
q.push(i);
}
}
}
if(path[e]==-1)return -1;
else return flow[n];
}
int EK()
{
int max_flow=0,step,now,pre;
while((step=bfs())!=-1)
{
max_flow+=step;
now=e;
while(now!=s)
{
pre=path[now];
map[now][pre]+=step;
map[pre][now]-=step;//这里可以将 刚找到 的 增光路经 删掉
now=pre;
}
}
return max_flow;
}
int main()
{
int u,v,z;
while(scanf("%d%d%d%d",&n,&np,&nc,&m)!=EOF)
{
memset(map,0,sizeof(map));
while(m--)
{
while(getchar()!='(');
scanf("%d,%d)%d",&u,&v,&z);
u++;v++;
map[u][v]=z;
}
while(np--)
{
while(getchar()!='(');
scanf("%d)%d",&u,&z);
u++;
map[0][u]=z;
}
while(nc--)
{
while(getchar()!='(');
scanf("%d)%d",&u,&z);
u++;
map[u][n+1]=z;
}
n++;
s=0;
e=n;
int ans=EK();
printf("%d\n",ans);
}
}
输入分别为m个点,a个发电站,b个用户,n条边;接下去是n条边的信息(u,v)cost,cost表示边(u,v)的最大流量;a个发电站的信息(u)cost,cost表示发电站u能提供的最大流量;b个用户的信息(v)cost,cost表示每个用户v能接受的最大流量。
典型的最大网络流中多源多汇的问题,在图中添加1个源点S和汇点T,将S和每个发电站相连,边的权值是发电站能提供的最大流量;将每个用户和T相连,边的权值是每个用户能接受的最大流量。从而转化成了一般的最大网络流问题,然后求解。
map[i][j]记录的就是i->j可以增加的流量
bfs
#include<stdio.h>
#include<queue>
#include<string.h>
#define maxn 1000
#define inf 0x7fffffff
using namespace std;
queue<int>q;
int map[maxn][maxn],path[maxn],flow[maxn];
int n,np,nc,m,s,e;
int bfs()
{
while(!q.empty())q.pop();
memset(path,-1,sizeof(path));
memset(flow,0,sizeof(flow));//其实这里清空和不清空没区别 ,应为每一次都是由前面的flow得到后面的flow
path[s]=1;
flow[s]=inf;
q.push(s);
while(!q.empty())
{
int k=q.front();
q.pop();
if(k==e)break;
for(int i=0;i<=n;i++)
{
if(i!=s&&path[i]==-1&&map[k][i])
{
flow[i]=flow[k]<map[k][i]?flow[k]:map[k][i];
path[i]=k;
q.push(i);
}
}
}
if(path[e]==-1)return -1;
else return flow[n];
}
int EK()
{
int max_flow=0,step,now,pre;
while((step=bfs())!=-1)
{
max_flow+=step;
now=e;
while(now!=s)
{
pre=path[now];
map[now][pre]+=step;
map[pre][now]-=step;//这里可以将 刚找到 的 增光路经 删掉
now=pre;
}
}
return max_flow;
}
int main()
{
int u,v,z;
while(scanf("%d%d%d%d",&n,&np,&nc,&m)!=EOF)
{
memset(map,0,sizeof(map));
while(m--)
{
while(getchar()!='(');
scanf("%d,%d)%d",&u,&v,&z);
u++;v++;
map[u][v]=z;
}
while(np--)
{
while(getchar()!='(');
scanf("%d)%d",&u,&z);
u++;
map[0][u]=z;
}
while(nc--)
{
while(getchar()!='(');
scanf("%d)%d",&u,&z);
u++;
map[u][n+1]=z;
}
n++;
s=0;
e=n;
int ans=EK();
printf("%d\n",ans);
}
}