算法解决收益最大化的问题,比如一个楼房有三种建筑方案 能否用某个算法解决收益最大化的问题,比如一个楼房有三种建筑方案,1 大型 18 层 90个单元,2 中型 12层 60个单元, 3 小型 6层 30个单元,每个单元的价格成本是30万元到60万元,这个取决于当年用工和材料成本的浮动。市场调研后发现有市场接受度会分高低1 大型 市场接受度高时候能赚2000万 接受度低时候能赔900万2 中型 市场接受度高时候能赚1400万 接受度低时候能赚500万3 小型 市场接受度高时候能赚800万 接受度低时候能赚700万。
利用贝叶斯和决策树 来进行医疗诊断的 要使用Python实现一个基于贝叶斯分类器和决策树的医疗诊断功能,我们需要构建一个模型,该模型可以根据病人描述的症状预测可能的病症。这个模型将利用贝叶斯分类器和决策树来进行预测。:我们需要一个包含不同症状和对应病症的数据集。这个数据集将用于训练我们的贝叶斯分类器和决策树。:我们使用朴素贝叶斯分类器来根据给定的症状计算每个病症的概率。:我们使用决策树模型来进一步细化和验证预测结果。:根据患者输入的症状,依次使用贝叶斯分类器和决策树来进行病症预测。000。
word2vec,是如何利用神经网络把一个onehot编码压缩成向量 Word2Vec 使用神经网络作为其核心组件来学习单词的向量表示。下面将介绍 Word2Vec 中的两种主要架构:CBOW(Continuous Bag-of-Words)和 Skip-Gram,并使用 CBOW 作为示例来说明这个过程。
MLP 多次感知器如何使用 二分类和多分类示例 多层感知器(MLP)是神经网络的一种基本类型,通常用于分类或回归任务。下面是一个简单的 Python 示例,演示如何使用多层感知器进行分类任务。我们将使用库中的来创建一个多层感知器,并在鸢尾花数据集上进行训练和测试。
Transformer 模型中的 QKV 机制是如何运作的 当然可以。让我们通过一个简化的例子来展示 Transformer 模型中的 QKV 机制是如何运作的。假设我们正在处理一个包含两个词“你好”和“世界”的序列,并且为了简单起见,我们使用一个非常小的嵌入维度来说明这个概念。
Transformer Q K V Transformer 模型中的 QKV 分别代表 Query(查询)、Key(键)和 Value(值),这是 Transformer 模型中自注意力机制(Self-Attention Mechanism)的核心组成部分。
两个向量的余弦相似度如何计算 两个向量的余弦相似度是通过测量两个向量在方向上的相似性来计算的。\[ \text{余弦相似度}(A, B) = \frac{A \cdot B}{\|A\| \|B\|} \]\[ \text{余弦相似度}(A, B) = \frac{A \cdot B}{\|A\| \|B\|} \]- \( A \cdot B \) 表示向量 A 和向量 B 的点积(内积)。- \( \|A\| \) 表示向量 A 的欧几里得范数(即长度)。- \( \|B\| \) 表示向量 B 的欧几里得范数。
Softmax函数 在多分类问题中,每个类别都会得到一个在0到1之间的概率值,这些概率值的总和为1。在这个例子中,`softmax` 函数首先计算输入向量 `z` 中每个元素的指数,然后计算所有指数的和,最后用每个元素的指数除以这个和,得到每个类别的概率。使用 `stable_softmax` 函数代替之前的 `softmax` 函数可以避免在处理非常大数值时可能出现的数值不稳定问题。其中,\( e^{z_i} \) 是 \( z_i \) 的指数,分母是所有指数的和,确保了所有概率之和为1。# 计算所有指数的总和。
微软AI系列 C#中实现相似度计算涉及到加载图像、使用预训练的模型提取特征以及计算相似度 在C#中实现相似度计算涉及到加载图像、使用预训练的模型提取特征以及计算相似度。你可以使用.NET中的深度学习库如TensorFlow.NET来加载预训练模型,提取特征,并进行相似度计算
微软AI系列 如何使用微软及相关产品来实现 文字转语音 通过Speech SDK,你可以访问Azure的语音服务,并使用其中的语音合成功能进行AI配音。:Azure还提供了自定义语音服务,可以让用户创建自己的语音合成模型,从而实现更加个性化和自然的语音合成。你可以通过Azure平台上的自定义语音服务来训练自己的模型,然后将其集成到你的应用程序中。:Microsoft也提供了直接使用的文本转语音API,你可以通过调用这些API来实现文本到语音的转换。记得在实际使用时,遵循 Azure 认知服务的使用条款,并注意保护你的密钥和数据。在这个示例中,你需要替换。
JS调用MetaMask调用启动转账 1 、代码必须跑在nginx下,否则没有eth对象。2、可以下载ganache来单跑个私服,然后安装谷歌metamask浏览器插件来实验3、账户1:0xFA387e41FA471172cC729167EBD4862aA7020D91 账户2:0x818DF62ff0bE3B28AE8be25e2e848E10138018B74、1000000000000000 为金额
Docker安装Confluence 参考链接: https://my.oschina.net/u/2289161/blog/1648587 https://hub.docker.com/r/cptactionhank/atlassian-confluence/dockerfile https://my.oschina.net/u/2289161/blog/1647061 https://my.oschina.net/u/2289161/blog/838218 https://hub.docker.com/r/cptactionhan
Python cv2 图片的几何变形 import cv2 as cvimport numpy as npfrom matplotlib import pyplot as pltimg = cv.imread('sudoku.png')rows,cols,ch = img.shapepts1 = np.float32([[56,65], [368,52], [28,387], [389,390]])pts2 = np.float32([[0,0], [300,0], [0,300], [300,300]])M ...
windows docker 空出C盘 迁移到其他盘 下面是操作方法: 首先关闭docker 关闭所有发行版:wsl --shutdown 将docker-desktop-data导出到D:\SoftwareData\wsl\docker-desktop-data\docker-desktop-data.tar(注意,原有的docker images不会一起导出)wsl --export docker-desktop-data D:\SoftwareData\wsl\docker-desktop-data\docker-desktop