杨航 AI
码龄17年
关注
提问 私信
  • 博客:2,500,247
    社区:1,458
    2,501,705
    总访问量
  • 191
    原创
  • 6,627
    排名
  • 709
    粉丝
  • 4
    铁粉
  • 学习成就

个人简介:请访问我的博客,别看广告,看聊效 http://blog.sina.com.cn/hanghangaidoudou http://我的QQ空间,和csdn空间

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:辽宁省
  • 加入CSDN时间: 2007-07-27
博客简介:

杨航的专栏

查看详细资料
  • 原力等级
    成就
    当前等级
    5
    当前总分
    1,358
    当月
    0
个人成就
  • 获得531次点赞
  • 内容获得237次评论
  • 获得2,520次收藏
  • 代码片获得466次分享
创作历程
  • 14篇
    2024年
  • 1篇
    2023年
  • 2篇
    2022年
  • 55篇
    2021年
  • 42篇
    2020年
  • 82篇
    2019年
  • 155篇
    2018年
  • 164篇
    2017年
  • 73篇
    2016年
  • 50篇
    2015年
  • 42篇
    2013年
  • 67篇
    2012年
  • 33篇
    2011年
  • 23篇
    2010年
  • 24篇
    2009年
  • 27篇
    2008年
  • 22篇
    2007年
成就勋章
TA的专栏
  • AI
    4篇
  • SpringCloud
    13篇
  • 笔记
    3篇
  • asp.net的Ajax2.0应用
    15篇
  • C#.net基础代码
    28篇
  • javascript代码段
    7篇
  • Symbol开发及一些问题
    12篇
  • WPF讨论问题解决
    6篇
  • 技术类库
    28篇
  • 医学研究
    1篇
兴趣领域 设置
  • 前端
    react.jswebpackxhtml
  • 后端
    node.js
  • 网络与通信
    https
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

354人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

方差的原理以及应用场景

方差是衡量数据波动性的重要指标,其应用广泛,能够帮助我们理解数据的变异程度、评估风险、以及在不同场景下做出更为科学的决策。下面是一个实际例子,说明方差的计算和应用。
原创
发布博客 2024.08.20 ·
783 阅读 ·
5 点赞 ·
0 评论 ·
5 收藏

算法解决收益最大化的问题,比如一个楼房有三种建筑方案

能否用某个算法解决收益最大化的问题,比如一个楼房有三种建筑方案,1 大型 18 层 90个单元,2 中型 12层 60个单元, 3 小型 6层 30个单元,每个单元的价格成本是30万元到60万元,这个取决于当年用工和材料成本的浮动。市场调研后发现有市场接受度会分高低1 大型 市场接受度高时候能赚2000万 接受度低时候能赔900万2 中型 市场接受度高时候能赚1400万 接受度低时候能赚500万3 小型 市场接受度高时候能赚800万 接受度低时候能赚700万。
原创
发布博客 2024.08.20 ·
869 阅读 ·
20 点赞 ·
0 评论 ·
6 收藏

利用贝叶斯和决策树 来进行医疗诊断的

要使用Python实现一个基于贝叶斯分类器和决策树的医疗诊断功能,我们需要构建一个模型,该模型可以根据病人描述的症状预测可能的病症。这个模型将利用贝叶斯分类器和决策树来进行预测。:我们需要一个包含不同症状和对应病症的数据集。这个数据集将用于训练我们的贝叶斯分类器和决策树。:我们使用朴素贝叶斯分类器来根据给定的症状计算每个病症的概率。:我们使用决策树模型来进一步细化和验证预测结果。:根据患者输入的症状,依次使用贝叶斯分类器和决策树来进行病症预测。000。
原创
发布博客 2024.08.20 ·
601 阅读 ·
7 点赞 ·
0 评论 ·
6 收藏

Doc2Vec

Doc2Vec 是一种扩展自 Word2Vec 的算法,它不仅可以生成词向量,还可以生成句子或文档的向量。
原创
发布博客 2024.08.12 ·
442 阅读 ·
4 点赞 ·
0 评论 ·
5 收藏

word2vec 如何用多个词表示一个句子

word2vec 模型通常用于将单词映射为固定大小的向量。
原创
发布博客 2024.08.12 ·
397 阅读 ·
6 点赞 ·
0 评论 ·
4 收藏

word2vec,是如何利用神经网络把一个onehot编码压缩成向量

Word2Vec 使用神经网络作为其核心组件来学习单词的向量表示。下面将介绍 Word2Vec 中的两种主要架构:CBOW(Continuous Bag-of-Words)和 Skip-Gram,并使用 CBOW 作为示例来说明这个过程。
原创
发布博客 2024.08.12 ·
547 阅读 ·
4 点赞 ·
0 评论 ·
3 收藏

MLP 多次感知器如何使用 二分类和多分类示例

多层感知器(MLP)是神经网络的一种基本类型,通常用于分类或回归任务。下面是一个简单的 Python 示例,演示如何使用多层感知器进行分类任务。我们将使用库中的来创建一个多层感知器,并在鸢尾花数据集上进行训练和测试。
原创
发布博客 2024.08.09 ·
412 阅读 ·
5 点赞 ·
0 评论 ·
5 收藏

QKV 归一化步及多层感知机 MLP

在 Transformer 模型中,QKV 输出的值通常会经过一个归一化步骤,随后通过一个多层感知机(MLP)来进一步处理。
原创
发布博客 2024.08.07 ·
389 阅读 ·
4 点赞 ·
0 评论 ·
8 收藏

Transformer 模型中的 QKV 机制是如何运作的

当然可以。让我们通过一个简化的例子来展示 Transformer 模型中的 QKV 机制是如何运作的。假设我们正在处理一个包含两个词“你好”和“世界”的序列,并且为了简单起见,我们使用一个非常小的嵌入维度来说明这个概念。
原创
发布博客 2024.08.07 ·
401 阅读 ·
5 点赞 ·
0 评论 ·
6 收藏

Transformer Q K V

Transformer 模型中的 QKV 分别代表 Query(查询)、Key(键)和 Value(值),这是 Transformer 模型中自注意力机制(Self-Attention Mechanism)的核心组成部分。
原创
发布博客 2024.08.07 ·
805 阅读 ·
4 点赞 ·
0 评论 ·
5 收藏

两个向量的余弦相似度如何计算

两个向量的余弦相似度是通过测量两个向量在方向上的相似性来计算的。\[ \text{余弦相似度}(A, B) = \frac{A \cdot B}{\|A\| \|B\|} \]\[ \text{余弦相似度}(A, B) = \frac{A \cdot B}{\|A\| \|B\|} \]- \( A \cdot B \) 表示向量 A 和向量 B 的点积(内积)。- \( \|A\| \) 表示向量 A 的欧几里得范数(即长度)。- \( \|B\| \) 表示向量 B 的欧几里得范数。
原创
发布博客 2024.08.06 ·
939 阅读 ·
15 点赞 ·
0 评论 ·
20 收藏

Softmax函数

在多分类问题中,每个类别都会得到一个在0到1之间的概率值,这些概率值的总和为1。在这个例子中,`softmax` 函数首先计算输入向量 `z` 中每个元素的指数,然后计算所有指数的和,最后用每个元素的指数除以这个和,得到每个类别的概率。使用 `stable_softmax` 函数代替之前的 `softmax` 函数可以避免在处理非常大数值时可能出现的数值不稳定问题。其中,\( e^{z_i} \) 是 \( z_i \) 的指数,分母是所有指数的和,确保了所有概率之和为1。# 计算所有指数的总和。
原创
发布博客 2024.08.06 ·
470 阅读 ·
4 点赞 ·
0 评论 ·
9 收藏

微软AI系列 C#中实现相似度计算涉及到加载图像、使用预训练的模型提取特征以及计算相似度

在C#中实现相似度计算涉及到加载图像、使用预训练的模型提取特征以及计算相似度。你可以使用.NET中的深度学习库如TensorFlow.NET来加载预训练模型,提取特征,并进行相似度计算
原创
发布博客 2024.03.19 ·
667 阅读 ·
2 点赞 ·
1 评论 ·
1 收藏

微软AI系列 如何使用微软及相关产品来实现 文字转语音

通过Speech SDK,你可以访问Azure的语音服务,并使用其中的语音合成功能进行AI配音。:Azure还提供了自定义语音服务,可以让用户创建自己的语音合成模型,从而实现更加个性化和自然的语音合成。你可以通过Azure平台上的自定义语音服务来训练自己的模型,然后将其集成到你的应用程序中。:Microsoft也提供了直接使用的文本转语音API,你可以通过调用这些API来实现文本到语音的转换。记得在实际使用时,遵循 Azure 认知服务的使用条款,并注意保护你的密钥和数据。在这个示例中,你需要替换。
原创
发布博客 2024.03.14 ·
949 阅读 ·
8 点赞 ·
0 评论 ·
7 收藏

如何使用OpenAI进行embedding句子后,输入新句子比较

如何使用OpenAI进行embedding句子后,输入新句子比较
原创
发布博客 2023.05.26 ·
1544 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

JS调用MetaMask调用启动转账

1 、代码必须跑在nginx下,否则没有eth对象。2、可以下载ganache来单跑个私服,然后安装谷歌metamask浏览器插件来实验3、账户1:0xFA387e41FA471172cC729167EBD4862aA7020D91 账户2:0x818DF62ff0bE3B28AE8be25e2e848E10138018B74、1000000000000000 为金额
原创
发布博客 2022.11.16 ·
1571 阅读 ·
0 点赞 ·
2 评论 ·
2 收藏

Docker安装Confluence

参考链接: https://my.oschina.net/u/2289161/blog/1648587 https://hub.docker.com/r/cptactionhank/atlassian-confluence/dockerfile https://my.oschina.net/u/2289161/blog/1647061 https://my.oschina.net/u/2289161/blog/838218 https://hub.docker.com/r/cptactionhan
转载
发布博客 2022.07.16 ·
2138 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

加特林压力测试代码示例 gatling stress test samples

发布资源 2022.05.24 ·
zip

Python cv2 图片的几何变形

import cv2 as cvimport numpy as npfrom matplotlib import pyplot as pltimg = cv.imread('sudoku.png')rows,cols,ch = img.shapepts1 = np.float32([[56,65], [368,52], [28,387], [389,390]])pts2 = np.float32([[0,0], [300,0], [0,300], [300,300]])M ...
转载
发布博客 2021.11.19 ·
948 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

windows docker 空出C盘 迁移到其他盘

下面是操作方法: 首先关闭docker 关闭所有发行版:wsl --shutdown 将docker-desktop-data导出到D:\SoftwareData\wsl\docker-desktop-data\docker-desktop-data.tar(注意,原有的docker images不会一起导出)wsl --export docker-desktop-data D:\SoftwareData\wsl\docker-desktop-data\docker-desktop
转载
发布博客 2021.11.13 ·
1023 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏
加载更多