PyGOD: A Python Library for Graph Outlier Detection / PyGOD:用于图异常检测的Python库

摘要

PyGOD是一个开源的Python库,用于检测图数据中的异常值。作为这类库中首个综合性的实现,PyGOD支持广泛的基于图的方法,用于节点、边、子图和图级别的异常检测,在一个统一的、良好文档化的API下设计,旨在供研究人员和从业者使用。为了解决大型图中的可扩展性问题,我们为选定的模型提供了包括小批量和抽样在内的高级功能。PyGOD配备了促进代码可靠性和可维护性的最佳实践,包括单元测试、持续集成和代码覆盖。为了促进可访问性,PyGOD在https://github.com/pygod-team/pygod/和Python Package Index (PyPI)上以宽松的BSD许可证发布。
关键词:异常检测、异常检测、图学习、图神经网络

1 引言

异常检测(Outlier Detection,OD),也称为异常检测,是识别与一般数据分布不符的异常样本的关键机器学习任务(Aggarwal, 2017; Li等,2022)。随着图数据在研究和实际应用中的重要性日益增加(Ding等,2021b; Huang等,2021; Fu等,2021; Zhou等,2021; Xu等,2022),最近利用基于图的方法如图神经网络(GNNs)进行异常检测引起了很多关注(Ma等,2021; Ding等,2019b,2021a),并在社交网络(Sun等,2018; Dou等,2020)和安全系统(Cai等,2021)等许多应用中发挥作用,例如检测可疑活动。

尽管在多种编程语言中存在一长串已建立的库,用于检测表格和时间序列数据中的异常值,例如PyOD(Zhao等,2019)、SUOD(Zhao等,2021b)、PyODDs(Li等,2020)、ELKI(Achtert等,2010)、OutlierDetec-Liu、Dou、Zhao、Ding、Hu、Zhang、Ding、Chen、Peng、Shu、Chen、Jia和Yu等(Muhr等,2022)、PyTOD(Zhao等,2021a)、TODS(Lai等,2021)、Telemanom(Hundman等,2018),但是缺少一个专门用于图异常检测的库。

为了填补这一缺口,我们设计了第一个全面的Python图异常检测库,名为PyGOD,其中包括了一些关键的技术进步和贡献。首先,它涵盖了从节点到图层级的多种算法,并且在标签/监督的可用性上有所不同。表1显示,PyGOD已经支持了十多种领先的算法。其次,PyGOD通过统一的API设计简化了检测模型的可访问性。从用户的角度来看,只需要将数据准备成预定义的图格式——然后PyGOD中的所有异常检测器都能够处理和处理这些数据。第三,PyGOD支持通过小批量和抽样进行大规模检测,这可以促进大图的检测。考虑到代码的清晰性和质量,我们提供了详细的API文档和示例,并且实现了跨平台的持续集成的单元测试,以及代码覆盖率和可维护性检查。

算法 监督
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值