01 sklearn Plotting Cross-Validated Predictions

其实在sklearn里面已经内置的很多经典的数据,比如波士顿的放假,iris花的数据等等。

导入数据方法:

from sklearn import datasets

boston = datasets.load_boston()
X = boston.data
y = boston.target


下面是引入模型的方法:

from sklearn.model_selection import cross_val_predict
#方法1
from sklearn import linear_model
lr = linear_model.LinearRegression()



#方法2

from sklearn.linear_model import LogisticRegression
logreg=LogisticRegressionpredict = cross_val_predict(lr,X,y,cv=10)



下面是完整的代码:

"""
====================================
Plotting Cross-Validated Predictions
====================================

This example shows how to use `cross_val_predict` to visualize prediction
errors.

"""
from sklearn import datasets
from sklearn.model_selection import cross_val_predict
from sklearn import linear_model
import matplotlib.pyplot as plt

lr = linear_model.LinearRegression()
boston = datasets.load_boston()
y = boston.target

# cross_val_predict returns an array of the same size as `y` where each entry
# is a prediction obtained by cross validation:
predicted = cross_val_predict(lr, boston.data, y, cv=10)

fig, ax = plt.subplots()
ax.scatter(y, predicted)
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=4)
ax.set_xlabel('Measured')
ax.set_ylabel('Predicted')
plt.show()


©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页