python keras多分类问题请教

最近在使用python的keras训练一个5分类的语音模型,由于没有系统学过怎么使用,就是用的别人类似的模型框架。
我的语音特征输入的是26*42的mfcc,要求输出5个分类结果。训练集一共有71个,测试集有20个,没有验证集。我的训练集的acc接近1,loss很小,但是训练集我得到的最大为0.8,但是我想要有较好的识别率。
因为是新手,我只发现训练次数的增加可以改变测试集的正确率,当然模型结构里面有防止过拟合,但是经过很多很多次训练后,最大为0.8。我觉得模型结构应该没问题吧,这种多分类别人都能够训练出来的。
所以我又在想是不是训练集太少了,希望有大佬能够帮我解答一下,或者给我提一些建议。

  • 0
    点赞
  • 0
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:深蓝海洋 设计师:CSDN官方博客 返回首页
评论

打赏作者

TH码

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值