大家读完觉得有帮助记得关注和点赞!!!
摘要
在当今不断演变的威胁形势下,确保数字主权已成为军事组织的强制性要求,特别是考虑到它们对人工智能(AI)驱动的网络安全解决方案的开发和投资日益增加。为此,本文提出了一个多角度的框架,用以定义和评估军事网络安全中数据和基于AI模型的数字主权控制。该框架侧重于背景环境、自主性、利益相关者参与以及该领域风险缓解等方面。基于数字主权和数据主权的概念,该框架旨在保护敏感的国防资产免受未经授权的访问、勒索软件和供应链攻击等威胁。这种方法通过保持运营自主性、确保安全性与安保(security and safety)、保障隐私以及促进军事系统和决策者的道德合规性,反映了数字主权多方面的性质。同时,该框架通过考虑一种多学科方法来解决盟军之间的互操作性挑战、战略和法律考量以及新兴技术的整合,从而增强(关键)数字资产的弹性并保持对其的控制。这是通过采用面向设计的研究来实现的,其中将系统文献综述与批判性思维和现场事件分析相结合,以确保所提出框架的有效性和现实性。
关键词: 数字主权,数据主权,人工智能,网络安全,军事行动
I 引言
传统上,主权与保护物理领土和政治权威相关,而在数字时代,主权扩展到保护信息系统、关键基础设施和通信网络免受可能改变国家行使独立控制能力的网络威胁[1]。在此背景下,主权的含义已经多样化:它包括保护国家数字资产免受外部攻击、对网络事件行使司法管辖权,以及更广泛地确保技术部署不会破坏国家权威或民主原则,这对于维护政治、社会和技术稳定性变得至关重要[2]。随着国家寻求(重新)确立对物理领土以及数字基础设施、网络和信息系统的控制,它们旨在在这个高度互联的世界中保持其权威和韧性[3]。这种不断演变的控制机制属于数字主权的范畴,反映了管理和保障构成数字现实的物理资源、软件架构和信息流的需求[4]。虽然数字主权最初是作为对外部技术依赖和脆弱性的防御性回应而出现的,但此后它已成为各种政治体制下广泛利益相关者的战略目标,从领土封闭的威权模式到强调基础设施弹性和监管领导力的自由主义努力[5]。然而,数字主权仍然是一个模糊的概念——即使其使用变得越来越普遍——其解释因政治、文化和战略背景而异。国家很少在网络安全或数字政策战略中明确界定主权,而在援引该术语时,它往往缺乏一致性和操作清晰度[1]。其核心思想通常围绕控制展开,但这一基本前提 layered with 不同的规范性和地缘政治解释,范围从国家安全要务到全球标准制定的地缘经济战略[4, 5]。此外,该术语作为政治流行语的使用常常掩盖了国家自主权与全球数字相互依存之间的潜在张力,使需要建立的连贯系统设计和治理机制复杂化[5]。
作为一个概念,数字主权处于技术、治理和社会价值的交叉点,反映了个人和国家日益需要对其数字基础设施、数据和技术发展施加控制。欧盟联邦总理府将其定义为在硬件、软件、服务和技能方面以自我决定的方式塑造数字化转型的能力,数字主权强调在法律框架内做出主权决策,而不诉诸孤立主义。除了其技术含义,数字主权还具有政治和经济影响,因为国家寻求对日益被谷歌、苹果、Meta、亚马逊和微软等私人科技巨头主导的数字基础设施重新主张权威[6]。这一雄心在欧盟(EU)引导旨在遏制平台主导地位和维护欧洲战略自主权的监管举措的努力中尤为明显,凸显了欧盟成为全球数字秩序中“监管超级大国”的愿景[6, 7]。然而,这一雄心面临着领土控制的愿望与全球互联的现实之间的张力,因为数字网络超越了国界[7]。此外,数字主权的论述常常在防御性保护主义和主动的标准制定之间摇摆,揭示了一种双重战略和视角:既确保内部数字资产的安全,又通过监管领导力在全球范围内投射影响力[5]。因此,构建和实现数字主权不仅需要技术专长和监管魄力,还需要对其在政治、经济和社会领域的分层含义和实际影响有批判性的理解,这需要在国家和个人层面都得到保证[8]。在这些方面,网络主权涉及将国家主权的既定原则(如领土完整和不干涉)应用于网络空间[1]。在网络空间中,国家努力对跨越其边界的数字活动行使权威。支撑数字主权和网络主权的关键要素是对数据的控制,数据是信息时代的战略资源。数据的关键性源于其赋予权力和影响力的能力,影响从国家安全到个人隐私的方方面面。然而,经典的网络安全措施往往无法防止对数据的未经授权访问或数据在被访问后的传播,突显了需要解决的重大安全问题[9]。
因此,数据主权是一个丰富且多维度的概念,涵盖技术、法律、社会、伦理和文化维度。它直接指对数据有意义的控制、所有权和管理权,通常由不同背景下的各种利益相关者(包括立法、ICT架构和社会倡导)表达[10]。然而,正如最近的研究表明,该术语的使用存在相当大的差异,不应将其用作数字主权的同义词,因为它们有不同的侧重点和含义[8]。除了技术方面,数据主权与文化伦理价值观相交织,强调包容性、尊重社会规范以及促进本地创新和经济发展的重要性[11]。因此,挑战在于以一种承认其分层含义的方式将数据主权操作化。
数据主权确保个人、社区、组织和国家保持对其数字资产的权威,然而当数据用于构建AI模型时,新的主权挑战就会出现。从基于人类的决策过程转向基于AI或辅助的决策过程,存在系统性贬低人类判断并将自由裁量权转移给非人类主体的风险。与此同时,AI开发和部署能力集中在少数主导科技公司手中,引发了人们的担忧,即这些实体在塑造控制权时正在行使一种数字主权,从而削弱了传统国家行为体的权力。因此,在构建和使用基于AI的系统时实现数字主权,要求相关利益相关者不仅要确保这些系统所使用的数据的安全,还要治理和控制AI模型自身的生命周期、自主性和战略部署[12]。
这意味着缺乏有效数字主权框架的国家和组织面临失去控制权给外国或公司行为体的风险。这种失控可能削弱其技术自主性、经济竞争力和社会韧性。因此,开发量身定制的主权机制以平衡自由、监管和技术发展,对于在所有领域(尤其是在军事网络领域)确保战略优势至关重要。军队日益认识到网络空间是一个战场,需要主权能力来进行防御性和进攻性数字操作[13]。在此背景下,系统需要被设计用于保护精心策划的国防数据,确保对供应商和合同进行果断管理,并保持对AI模型和基础设施的主权控制[14]。同时,为网络防御和进攻目的开发和部署的基于AI的系统既放大了机遇也放大了脆弱性:它们以高度自主或完全自主方式行动的能力需要建立机制,确保战略决策与国家利益和法律框架保持一致。此外,鉴于网络威胁的流动性和复杂性(范围从信息操纵到关键基础设施攻击[15]),军事网络行动中的数字主权必须强调弹性、适应性强和可验证的控制框架。这样做,武装力量不仅能保护其网络能力,还有助于塑造一个未来国际秩序,其中网络空间的主权通过可信、负责任和可靠的行为得到尊重和执行。
在此背景下,本研究旨在基于系统化和多学科方法,设计一个用于军事基于AI的网络安全的数字主权控制框架。具体而言,该框架建立在两个核心方法论支柱之上。首先,进行系统文献综述,以识别和分析军事基于AI的网络安全应用中使用的现有数据集,从而提供对该领域AI系统所使用的经验资源的具体理解。其次,进行广泛的文献综述,考察数字主权在各个领域(特别是在军事领域)的含义、演变和影响。据我们所知,这是此方向的首次尝试。通过这种双重研究策略,确保所提出的框架既实际锚定在真实世界的数据实践中,又在概念上稳健地应对该领域主权的多维挑战。为演示目的,提出了一个关于网络行动的框架用例,并展示了在持续进行的乌克兰战争中所做的相关努力。该案例研究为了解在活跃地缘政治对抗条件下维护数字基础设施、数据和AI模型主权所面临的挑战、动态和必要性提供了关键见解。
本文大纲结构如下。第二部分讨论了在此背景下进行的相关研究。第三部分介绍了本研究中考虑的方法论。第四部分反思了在军事领域构建基于AI的网络安全应用时使用的数据集类别。第五部分提出了本研究中推进的框架设计。第六部分通过在持续乌克兰战争期间进行的各种网络操作用例上演示了所提出框架的适用性。最后,第七部分讨论了结论性意见和未来研究前景。
II 相关工作
数字技术在军事行动中的整合导致了多域作战的发展,其优先考虑在所有作战域(包括网络空间)协调行动[16]。这种方法旨在快速实现统一结果,应对当前战争的多面性和非线性方面。持续进行的乌克兰战争凸显了网络行动在现代战争中的重要作用,表明需要弹性和适应性强的控制框架[17, 18]。
面对不断升级的紧张局势,数字主权至关重要。国家努力掌握信息技术并维护主权数字空间,同时成为全球网络的一部分。这涉及出于安全原因规范跨境数据流,并在全球范围内协调网络安全法规[19, 20]。挑战包括国家支持的网络行动、网络间谍活动以及由AI和量子计算等先进技术塑造的动态环境。俄乌冲突强调了网络弹性和战略性地使用网络行动以保护国家利益的重要性[21]。[22]主张建立一个网络安全主权行动框架,涵盖相关政策领域和工具。作者强调能够评估能力、容量和控制的可能改进的重要性。他们还强调了在网络安全主权中增加这些元素的重要性。[23]强调数字主权是一个相对较新的概念,仍在演变中,没有正式定义。该研究强调在确保组织和国家保持平衡、避免限制其对外经济关系的同时,考虑数字主权的必要性。框架必须容纳多个主权利益并适应这种平衡。
数据主权指的是对数据存储、传输和使用的控制。各国越来越多地实施数据本地化法律和法规以维护国家利益。例如,欧盟制定了《数字市场法案》和《数字服务法案》来规范数字经济和新兴技术。这些措施旨在培育本土科技产业并确保技术独立,加深了地缘政治竞争。对数据的控制是信息时代的战略资源,影响从国家安全到个人隐私的方方面面[24]。[25]提出了一个使用知识图谱进行数据分类的数据主权治理框架。这项工作强调了能够识别和分类数据以遵守法规的重要性。[26]引入了一个理解数据主权的概念模型,该模型涵盖了确保数据主权和保证不同方之间可信数据共享所需的七个核心方面。
主权AI涉及对AI技术的控制以维护国家价值观、隐私和安全。这一概念将数字主权的核心组成部分扩展到AI,增加了一个价值对齐组件。各国政府正在制定实现主权AI的战略,专注于国内能力和控制。AI自主性与控制之间的相互作用至关重要,其后果因应用的控制水平而异。AI在军事行动中的整合,特别是在网络防御和进攻中,既放大了机遇也放大了脆弱性[27, 20]。
尽管在监管基础上已经做了大量工作,但现有文献尚未全面探讨军事领域中数字主权与基于AI的网络安全系统的交叉点。解决该领域主权的多维挑战至关重要。本研究强调了在数字主权领域内一个切实的框架对于有效管理现代军事行动、网络安全、数据管理和国防部门内的AI治理的重要性。
III 研究方法论
本研究旨在为军事基于AI的网络安全系统设计一个数字主权控制框架。为此,制定了以下研究问题:
-
哪些数据集或数据源用于开发军事领域的基于AI的网络安全应用?
-
在该领域为这些应用设计数字主权控制框架的关键要素是什么?
为应对这些研究问题,我们采用了一个多学科的立场,分两个阶段进行。在第一阶段,进行了系统文献综述(SLR)[28],以细致地识别、分析和分类对于在军事网络背景下开发、训练和部署AI系统至关重要的各种数据集,涵盖网络防御、网络战、区块链分析、社交媒体情报、基于代理的建模和专门训练语料库等领域。这种结构化的方法提供了关于必须主张和维护主权的特定数据制品的关键基础知识,反映了该问题固有的多学科性质,其交叉了AI、网络安全、军事行动和政策研究。在此阶段,搜索字符串包括诸如网络安全、网络战、军事、国防、人工智能、机器学习和深度学习等关键词。相应地,该字符串用于在科学数据库中进行搜索,如IEEE数字图书馆、ACM数字图书馆、Web of Science、Taylor & Francis、Sage Journals、Wiley和Google Scholar(前10页)。这最初产生了3860篇文章,最终有52篇文章被深入分析。
在第二阶段,基于SLR提供的实证基础,在同一科学数据库内对数字主权概念本身进行了广泛的文献综述。该综述考察了现有的理论框架、概念模型、相关原则、不断演变的政策考量以及与建立和验证对数字资源和进程的主权控制相关的技术推动因素(无论是普遍而言还是在安全敏感背景下),从最初的51篇文章开始。除了这些资源外,还分析了在乌克兰战争期间执行的各种网络行动。通过将SLR绘制的实际数据景观与从对数字主权和在乌克兰进行的网络行动的广泛综述中收集的理论和用例见解相融合,这些资源结合在一个多学科研究方法中,使得能够明智地设计所提出的框架。这确保了最终框架不仅在概念上稳健,能够应对核心主权原则,而且与实际中在军事AI驱动的网络安全中遇到的特定数据和操作现实相关。
IV 领域数据集
了解哪些类别的数据集用于开发军事领域的基于AI的网络安全系统对于有效的数字主权控制至关重要,因为它为战略对齐、威胁缓解和操作有效性提供了信息。这种必要性源于围绕网络空间实体以及发生在网络空间内部或通过网络空间发生的事件的固有复杂性、多样性和不确定性。为此,基于进行的系统文献综述,识别了七类数据集:网络防御、网络战、区块链、社交媒体、无人驾驶飞行器(UAV)、基于代理的建模和仿真以及学习与伦理。虽然网络防御和网络战数据集支持实时威胁检测和主动防御行动,区块链数据集确保评估安全透明的数据共享,社交媒体数据集能够识别和缓解虚假信息威胁,基于代理的建模数据集促进预测性场景分析,而教育数据集增强网络安全意识和准备程度。以下概述明确识别并勾勒了这些数据集类别,强调了它们在更广泛的军事数字主权和网络行动背景下的战略重要性和独特作用。
在第一类,网络防御中,模拟控制系统通信数据集[29]用于模拟军事指挥和控制交互,允许算法实时发现协议异常。补充的恶意软件语料库,如VirusTotal数据集[30, 31],支持面向物联网(IoT)的检测管道,而Markamilley.com数据集[32]说明了如何对高级领导层进行错误信息攻击以污染网络环境。同时,北约数据耕种服务数据集[33]构建实验运行元数据用于AI概念的风险效益评估,MIL STD 1553通信总线数据集[34]允许进行协议级防御研究,而全面的基于Zeek的网络数据集[35]结合了生成和合成数据,使AI模型能够学习复杂的网络流量和用户行为模式以进行早期威胁检测。
在第二类,网络战中,网络战事件兼容性数据集[36]使用广泛的场景(著名地包括Stuxnet攻击)来训练AI模型。目标是使这些模型能够识别并有效对抗复杂的对手战术、技术和程序(TTPs)。与此同时,网络攻击模拟数据[37]提供了一个补充资源。它由人工生成的网络攻击场景组成,旨在反映真实世界的威胁。这包含了诸如内存和CPU使用率等计算数据,使军队能够评估其系统在模拟压力下的承受能力和性能。
在第三类,区块链中,区块链军事数据集[38]包含交易、智能合约和交互数据,对于开发旨在保护军事区块链应用免受未经授权访问和黑客攻击的AI模型很有价值,促进了自动化安全协议和交易数据中的实时异常检测。
在第四类,社交媒体中,Markamilley.com数据集[39]提供了社交媒体平台如何被利用来通过虚假信息和 manipulated images 等技术损害声誉和传播错误信息的具体例子。为了理解军事行动的公众接受度,情感分析数据集[29]提供了衡量公众反应和情绪的能力。在特定的地缘政治背景下,例如持续的乌克兰战争,Twitter情感数据集[30]通过分类情感(例如,区分亲克里姆林宫和反克里姆林宫的观点)提供了对竞争性叙述的更深入理解。提供更综合的视角,乌克兰冲突数据集[40]将官方通信(如泽连斯基总统的演讲 transcripts)与报告的暴力事件相关联。这种结构化的方法为了解战时公共传播策略及其引发的相关情绪反应提供了宝贵的见解。
在第五类,无人驾驶飞行器(UAV) 中,在合成测试平台上开发的UAV安全数据集[41, 42]专用于评估基于机器学习的无人机异常检测。图像分析能力由SatUAV数据集[43]支持,该数据集包含卫星-航空图像对用于识别差异。同时,标准基准与无人机特定功能(如数据集中的GPS数据)集成,例如LRRF模型数据集[44]和合并的无人机数据集[45]。此外,特定场景的资源,如攻击树模型数据集[46]模拟了监视数据盗窃等威胁,而UAV辅助的HetNet安全数据集[47]专注于涉及UAV和小型蜂窝的复杂网络环境中的基于身份的身份验证。
在第六类,基于代理的建模和仿真中,数据集促进了自主系统和复杂交互的研究。为此,自主智能网络防御代理(AICA)数据集[48]支持探索网络安全的代理功能,如感知、决策和行动选择。红蓝队网络交互数据集[49]捕捉了攻击-防御场景的复杂性,提供了高级描述和详细的网络模型。此外,自适应C2网络拓扑数据集[50]使用生成的网络结构来模拟对指挥与控制(C2)网络的威胁,增强了对通信弹性的理解。
在第七类,学习与伦理中,网络智能学习健身房(CyGIL)数据集[51]提供了一个独特的环境,结合了模拟器和高保真仿真器。这种设置允许使用专门为网络操作设计的真实强化学习场景来训练AI智能体。理解正常系统操作的基线(对于有效学习和异常检测至关重要)由系统操作数据数据集[19]支持。该数据集捕获了军事系统内传输的信号和实时内存中存储的数据。此外,军事AI的伦理维度由诸如GLAWS伦理[52]之类的数据集解决。该特定数据集捕获了美国军事学院一个试点项目的结果,在该项目中,学生将正义战争理论原则应用于机器人编程,从而促进了对在军事背景下部署AI所固有的道德影响的必要且更深入的理解。
V 框架设计
在 delineation 和分类了用于军事基于AI的网络安全应用的基本数据集之后,需要考虑理解数字主权的含义以及在此背景下数字主权控制意味着什么。这需要将可验证的控制从原始数据制品扩展到由此构建的AI模型。确保对数据和AI模型的双重主权对于维护操作完整性、保护敏感的国防信息、防止对抗性操纵以及确保基于AI的网络安全系统可靠地支持国家战略要务和军事领域的道德考量至关重要。
基于识别了基于AI的军事网络安全应用中使用的多样化数据集的系统文献综述,同时基于在该领域内外对数字主权进行的广泛文献综述,进一步提出了一个数字主权控制的概念框架设计。该框架专门为军事基于AI的网络安全背景量身定制,围绕四个被认为对有效治理至关重要的、相互关联的基本要素构建,如下所述。首先,背景环境(Context),它定义了战略、法律和道德的操作边界。其次,自主性(Autonomy),它处理对AI决策和操作独立性的控制。第三,利益相关者参与(Stakeholder Involvement),管理人和组织的接口,包括盟军协作和监督。第四,风险缓解(Mitigation of risks),确保系统针对相关威胁的安全性、弹性和可信度。这四个支柱共同旨在提供一个全面的结构,用于在这个关键领域建立、评估和维护对关键数字资产和AI驱动进程的可验证主权控制。
V-A 框架层
所提出的框架具有一个分层架构,范围从高层战略指导到操作执行和技术保证。
战略层(The Strategic Layer) 代表了框架的基础,因为它建立了该领域的 overarching 规则和授权。这意味着决定需要应用于确保该领域数字主权的政策、法律和道德考量。同时,需要通过具体指令确保构建和使用的解决方案的透明度,这些指令保证可解释的结果以用于问责目的,并促进整合和尊重与相关原则和规则相一致的法律、社会和道德原则、规范和价值,这些原则和规则由国防部政策办公室、法律顾问、数据保护机构和联盟代表等行为体制订,并通过相关机制执行[12, 1, 10, 14, 7, 6]。
治理与保证层(The Governance and Assurance Layer) 侧重于监督、详细的政策制定和数字主权的持续验证。该层利用诸如主权成熟度指标和红队演练、审计、不可变追踪和伦理审查委员会等工具来确保合规性和可信度。此外,该层通过定义军事网络背景下的国家数字主权原则(包括对用于防御和进攻的数据、算法和基础设施的控制),将高层战略目标转化为具体的可操作政策,同时确保符合诸如国际人道法(IHL)、数据保护机制如数据保护影响评估(DPIA)和交战规则(RoE)等框架,同时实施强大的数据治理政策,确保定义相应的敏感级别和生命周期处理程序[8, 5, 11, 15, 13, 53]。
数据主权层(The Data Sovereignty Layer) 反映了在整个生命周期中对信息资产进行可验证控制的需求。这涉及确定管辖和操作控制,建立清晰的分类和处理规则,并采用诸如加密分片(crypto-sharding)、机密计算(confidential computing)和联邦学习网关(federated learning gateways)等技术措施。在这个意义上,保护控制根据每个数据集类别进行定制,示例包括实时流式传输网络操作日志、对社交媒体OSINT使用数据二极管和本地向量数据库以防止数据外泄、对基于代理的仿真使用哈希确保可重现性,以及对教育或训练语料库实施分级解密。该层确保数据驻留在主权存储中,保护数据传输安全,并应用数据最小化等机制[8, 9, 54, 10, 11, 55, 56]。
AI主权层(The AI Sovereignty Layer) 指的是所使用的AI模型,要求安全的MLOps管道、模型来源账本、全面的对抗性和鲁棒性测试以及政策感知的模型部署。此类技术包括联邦或拆分学习管道,将原始训练数据保存在安全环境中,同时允许跨域模型更新,以及专门的模型验证和确认(V&V)以及用于对抗测试的红队范围、公平性评估和偏见扫描,以及任务适合性评估。在该层中,考虑使用各种相关的可解释AI(XAI)方法和技术构建透明和可解释的AI[12, 10, 14, 56]。
网络操作与基础设施层(The Cyber Operations and Infrastructure Layer) 确保在AI驱动的网络能力的实际应用和执行过程中拥有主权控制,涵盖操作程序和底层技术基础设施。这包括管理防御性AI(例如,异常检测)、进攻性网络规划支持、自主代理和仿真,同时积极识别和缓解数字主权威胁,如未经授权的访问和供应链攻击。进一步这意味着通过优先使用国家开发或经过严格审查的组件和安全流程来使用可信硬件和软件,使用国家军事云维护主权计算环境,并确保对军事通信网络的网络基础设施控制,使用诸如安全与隐私 by design、零信任访问、实时人工覆写机制(即“人在环”,human on the loop)和战斗损害评估能力等原则[12, 9, 1, 54, 11, 14, 7, 13, 56, 6, 53]。
V-B 框架维度
定义该框架特征的维度如下:
背景环境维度(The Context dimension) 指的是对这些军事基于AI的网络安全系统运作的操作环境的全面理解。这涉及识别和分类任务关键型数据集,严格映射威胁 landscape,包括潜在的网络威胁,如未经授权的访问、勒索软件、供应链泄露、虚假信息活动、间谍活动和混合战争场景。同时,它也涉及管辖、监管、战略和地缘政治边界,确保数据存储、处理和执行严格遵守国家和国际法律及社会道德标准和原则。此外,它确保使用专用的主权基础设施,以提供对敏感军事数据和系统的强大物理和数字控制,同时考虑所有相关利益相关者的要求和目标[12, 54, 10, 11, 14, 15, 7]。
自主性维度(The Autonomy dimension) 涉及授予AI系统的受控独立性以及维持它们所需的操作弹性,确保与国家主权目标保持一致。它涉及清晰界定AI在军事背景下的决策能力,在基于AI的流程和必要的人工监督之间建立谨慎的平衡。这指的是(i)操作自主性(operational autonomy),需要建立独立、有弹性的基础设施,能够在遭受网络攻击或地缘政治紧张局势加剧时维持不间断的AI服务,以及(ii)政策驱动的自主性(policy-driven autonomy),由明确的、数字嵌入的规则、操作约束和预定义条件管理,确保AI行动保持受限并服务于国家利益,同时保留人类指挥官/决策者的最终决策权。通过这个维度,定义和使用自主性层级(例如,人在环,human-in-the-loop;人在环上,human-on-the-loop;完全自主),反映操作背景和敏感性,由特定的自主性治理政策和协议管理,这些政策和协议规定了AI何时可以独立行动 versus 需要人工批准,或在人-AI团队设置中考虑采用自适应自主性方法,基于情境风险评估、上下文意识和系统置信度进行动态调整和自我修复控制。同时,需要考虑(实时)监控和干预,通过仪表板和可解释性机制的集成来确保所用系统的透明度[12, 54, 11, 14, 7, 13, 56, 6]。
利益相关者参与维度(The Stakeholder Involvement dimension) 捕捉了所涉及利益相关者的定义角色、它们的协作机制,同时实施适当的监督并确保充分的培训和意识。这承认了涉及广泛行为者的必要性,范围从战略领导层(例如,国防部长、政策委员会)和操作指挥官(例如,联合特遣部队指挥官、网络安全/防御中心)到技术人员(例如,AI工程师、数据管理员、网络操作员)、法律和伦理顾问、情报界、盟国伙伴、参与供应链或研究的工业界和学术界,以及最终与系统交互的最终用户和培训者。核心目的是将主权考量嵌入既定的军事指挥结构中,同时促进必要的合作并确保各级问责[8, 10, 15, 56]。
风险缓解维度(The Risk Mitigation dimension) 意味着主动识别、分析、优先排序和消除可能损害军事AI网络领域数字主权、操作连续性、系统安全性和可信度的威胁。这涵盖了广泛的风险,包括特定的AI脆弱性(例如,模型投毒、规避、提取)、传统网络威胁(如未经授权的访问和勒索软件)、关键基础设施弱点、内部威胁、道德和法律不合规问题,以及对主权特别有害的威胁,如供应链攻击。该维度需要一个系统化和持续的方法,采用针对每个数据集类别和系统组件量身定制的全面风险建模和评估,确保潜在的攻击向量及其相应的被利用漏洞在甚至可能被利用之前就被理解和解决,从而保持控制。为此,需要应用强大的技术和程序保障措施,考虑分层防御机制、弹性恢复方法以及主动威胁监控和测试解决方案[1, 54, 10, 55, 6, 6]。
V-C 框架指标
所提出框架的成功实施和评估意味着在相关场景中使用适用的指标来评估其有效性。没有客观的指标,主权风险的评估变得主观,阻碍系统评估、漏洞识别、资源合理性论证、法律和道德授权合规性证明以及随时间推移的改进跟踪。在这个意义上,指标用于将数字主权的抽象概念操作化,将数据本地化、政策约束的自主性、安全互操作性和供应链完整性等原则转化为可量化的指标,从而为军事AI网络安全系统提供可展示的保证。相应地,当应用于特定用例时,各种控制指标应与框架的结构和目标保持一致。根据讨论的详细组件,潜在的指标可能包括[12, 13, 15, 56, 6, 53, 15, 13, 57]:
-
合规性指标(Compliance Metrics):例如,遵守国家/IHL/道德准则的百分比,遵守治理机构(如欧盟AI法案和欧盟网络弹性法案)的情况,区块链日志的审计追踪完整性,以及策略即代码(policy-as-code)执行的准确性。
-
自主性控制指标(Autonomy Control Metrics):例如,人工覆写的频率/延迟,信任验证率,以及对定义的自主性层级的遵守情况。
-
数据和模型主权指标(Data and Model Sovereignty Metrics):例如,通过SBOM(软件物料清单)验证等机制具有已验证来源的关键数据/模型的百分比,通过数据二极管防止数据外泄的成功率,以及攻击检测率。
-
弹性指标(Resilience Metrics):例如,主权环境中的基础设施正常运行时间,故障安全/降级协议的成功率,以及关键组件的漏洞修复时间。
-
主权控制指数(Sovereign Control Index):用于评估对特定军事基于AI的网络安全系统或能力有效维持数字主权的程度,例如,访问控制的有效性和模型来源的保证水平。
-
主权成熟度指标(Sovereignty Maturity Metric):使用具有几个定义级别的分级尺度,评估组织或特定系统实施和管理数字主权控制的能力、有效性和复杂性的水平。这作为一种标准化方法来基准化数字主权的当前状态,确定需要改进的领域,根据风险和战略重要性定义目标成熟度水平,并跟踪该领域随时间的进展。
VI 用例
持续的乌克兰战争被视为一个用例,以演示和评估所提出的框架,考虑到在此背景下进行的网络操作的复杂性和强度。该用例特别基于从真实操作背景中吸取的教训,检查了框架的层和维度,重点关注各种事件,如对乌克兰关键基础设施的网络攻击、虚假信息活动和复杂的供应链攻击。具体来说,这些网络操作通常与常规军事行动相结合,旨在破坏乌克兰的指挥和控制,削弱关键基础设施,进行间谍活动,并破坏社会士气和政府合法性[58]。战略意图似乎是多方面的,从对动能行动的直接战术支持(例如,在推进前 disrupt 通信)到旨在 destabilize 乌克兰国家和影响国际看法的更广泛战略努力。同时,基于虚假信息等社交媒体操纵活动一直是冲突中普遍存在的因素。国家支持的行为者和代理人利用社交媒体平台、国家控制的媒体和隐蔽的在线操作传播旨在证明入侵合理性、诋毁乌克兰领导层、在乌克兰及其盟国内部制造分裂并可能煽动动荡的叙事。这些事件突显了需要强大的数字主权措施,能够在应对各种混合战争战术时保持操作自主性、安全性和道德一致性。
尽管这些网络攻击强度大、复杂度高,但乌克兰的网络防御展现了显著的韧性,并得到了来自政府和私营部门的国际支持的大力加强。乌克兰计算机应急响应小组(CERT-UA)在识别威胁和协调响应方面非常有效,经常公开分享攻击的技术细节[59]。同时,像微软和谷歌这样的大型科技公司提供了广泛的威胁情报、网络安全支持和云基础设施韧性,在减轻攻击和维护基本服务方面发挥了至关重要的作用。此外,来自盟国的情报共享和能力建设努力显著增强了乌克兰近乎实时地预测、检测和响应网络威胁的能力,代表了在 active conflict 期间前所未有的国际网络防御合作水平。在此背景下,定义了明确的角色,制定了尊重主权注意事项的安全协作框架,创建并执行了关于多样化工具的快速培训,并且建立了跨职能治理委员会并使其运作,即使在 active conflict 期间需要有效应对各种挑战。
在战略层,乌克兰的数字主权曾经并且持续受到协调网络活动(如间谍活动、通信中断和虚假信息活动)的挑战,这些活动旨在在这个复杂的混合战争背景下破坏国家凝聚力和战略韧性[60]。相应地,通过实施与国家和国际法相一致的清晰主权原则,促进了透明使用AI驱动的分析来快速识别、解释和缓解虚假信息威胁[61]。为此,由道德授权和强大透明度指导的政策确保了AI工具提供可解释的结果,提供了问责制,这对于在国内外舞台上保持合法性至关重要。
在治理层,结构化的监督和验证流程(如系统验证和红队演练)在乌克兰被证明是必不可少的。网络安全审计和通过区块链技术锚定的不可变审计追踪确保了网络操作保持可信和可验证。此类治理机制系统地评估和管理对抗性攻击带来的风险,在操作期间保持信任并实现网络事件的精确归因[62]。例如,政策驱动的自主性需要清晰的、数字嵌入的ROE,定义AI何时可以推荐或可能启动行动(例如,阻止IP、隔离网络)以及何时需要明确的人工授权。
数据主权层在战时网络操作中保护敏感的乌克兰军事数据免受未经授权的访问和外泄方面同样重要[63]。这涉及尽可能严格的管辖控制(例如,仅在可信区域内的主权或经过审查的云实例上处理敏感数据),并采用技术措施,如用于分析共享威胁情报而不导出原始日志的联邦学习网关、用于摄取OSINT同时防止外泄的数据二极管、对在特定协议下共享的数据应用加密分片或高级加密,并确保尽管信息涌入仍遵循数据最小化原则。
在AI主权层内,有必要利用安全的MLOps管道和严格的模型验证方法,确保对抗AI攻击的鲁棒性。联邦学习和拆分学习方法论允许安全的模型更新而不损害数据主权,尽管面临无情的网络威胁,仍能保持操作完整性。此外,部署由透明和可解释的AI技术支撑的政策感知模型,加强了道德合规性和战略一致性,显著增强了网络操作期间的韧性[64, 65]。
在网络操作与基础设施层,确保基于AI洞察的网络防御行动的实际执行拥有主权控制。这涉及管理防御性AI工具(异常检测、自动化响应建议)、可能支持进攻性网络规划以及使用基于代理建模 informed 的仿真。为此,乌克兰必须保持对其可信硬件和软件栈的控制,即使对捐赠的设备也严格应用供应链风险管理(SCRM)流程。此外,使用国家(军事)云或安全飞地(即使可能根据特定协议托管在盟国/商业基础设施上)构成了主权计算环境。确保对承载AI数据/命令的军事通信的弹性网络基础设施控制至关重要,同时实施对数字平台的零信任访问,并确保乌克兰指挥官和其他决策者通过强大的人工覆写(“人在环”)机制保留最终权限。作为控制措施,例如,操作自主性需要弹性基础设施,如果盟国连接被切断,该基础设施至少可以部分运行,并且需要自适应自主性机制来根据快速变化的威胁 landscape 和潜在的对抗性操纵调整AI置信度阈值。
在此背景下,遇到的风险是多方面的:直接的破坏性攻击(勒索软件、像CaddyWiper/Industroyer2这样的擦除器)、间谍活动、针对捐赠系统的供应链攻击、内部威胁和AI特定脆弱性(例如,共享情报 feed 的数据投毒、模型规避)[66, 67]。因此,风险缓解需要强大的分层防御(例如,零信任机制)、针对以乌克兰为目标的 state-sponsored 对手的主动威胁建模和仿真、各个机构的弹性恢复计划、持续监控和测试(例如,对抗性AI测试)、即使对捐赠设备也进行严格的供应链审查,以及对所使用的数据和模型进行强大的密码保护[68]。除此之外,主权控制下的主动威胁监控和快速事件响应是在此背景下需要考虑的关键操作要求。
VII 结论
在当今不断演变的威胁形势下,确保数字主权已成为军事组织的强制性要求,特别是考虑到它们对AI驱动的网络安全解决方案的开发和投资日益增加。本研究提出了一个多角度框架来定义和评估军事网络安全中数据和基于AI模型的数字主权控制。该框架侧重于背景环境、自主性、利益相关者参与和风险缓解,旨在保护敏感的国防资产。
该框架的分层架构,从战略指导到操作执行,为建立、评估和维护对关键数字资产和AI驱动进程的可验证主权控制提供了一个全面的结构。乌克兰冲突的用例强调了该框架的适用性以及在面对复杂网络威胁时保持操作自主性、安全性和道德一致性的重要性。
通过试点研究和实际案例应用对拟议框架进行实证验证,对完善数字主权综合评估指标至关重要。此外,制定标准化协议与协作框架将有助于实现数字主权的平衡发展,在确保系统互操作性的同时兼顾国家与国际利益。
1286

被折叠的 条评论
为什么被折叠?



