UVALive - 3263 That Nice Euler Circuit——欧拉定理

欧拉定理:设平面图的定点数、边数和面数分别为V,E和F, 则V+F-E=2

注意精度问题,1e-10WA了,改成1e-8才过

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
struct Point {
    double x, y;
    Point(double x = 0, double y = 0) : x(x), y(y) {}
};
typedef Point Vector;
Vector operator + (Vector A, Vector B) { return Vector(A.x+B.x, A.y+B.y); }
Vector operator - (Vector A, Vector B) { return Vector(A.x-B.x, A.y-B.y); }
Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); }
Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); }
bool operator < (const Point& a, const Point& b) {
    return a.x < b.x || (a.x == b.x && a.y < b.y);
}
const double eps = 1e-8;
int dcmp(double x) {
    if (fabs(x) < eps) return 0; else return (x < 0 ? -1 : 1);
}
bool operator == (const Point& a, const Point& b) {
    return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0;
}
double Dot(Vector A, Vector B) { return A.x*B.x+A.y*B.y; }
double Cross(Vector A, Vector B) { return A.x*B.y-A.y*B.x; }
Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) {
    Vector u = P-Q;
    double t = Cross(w, u) / Cross(v, w);
    return P + v*t;
}
bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2) {
    double c1 = Cross(a2-a1, b1-a1), c2 = Cross(a2-a1, b2-a1),
           c3 = Cross(b2-b1, a1-b1), c4 = Cross(b2-b1, a2-b1);
    return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0;
}
bool OnSegment(Point p, Point a1, Point a2) {
    return dcmp(Cross(a1-p, a2-p)) == 0 && dcmp(Dot(a1-p, a2-p)) < 0;
}
const int maxn = 310;
Point P[maxn], V[maxn*maxn];
int main() {
    int n, kase = 0;
    while (~scanf("%d", &n) && n) {
        for (int i = 0; i < n; i++) {
            scanf("%lf%lf", &P[i].x, &P[i].y);
            V[i] = P[i];
        }
        n--;
        int c = n, e = n;
        for (int i = 0; i < n; i++) {
            for (int j = i + 1; j < n; j++) {
                if (SegmentProperIntersection(P[i], P[i+1], P[j], P[j+1])) {
                    V[c++] = GetLineIntersection(P[i], P[i+1]-P[i], P[j], P[j+1]-P[j]);
                }
            }
        }
        sort(V, V+c);
        c = unique(V, V + c) - V;
        for (int i = 0; i < c; i++) {
            for (int j = 0; j < n; j++) {
                if (OnSegment(V[i], P[j], P[j+1])) e++;
            }
        }
        printf("Case %d: There are %d pieces.\n", ++kase, e+2-c);
    }
    return 0;
}

阅读更多
版权声明:欢迎大家转载,转载请注明出处 https://blog.csdn.net/hao_zong_yin/article/details/80338023
个人分类: 基础几何
想对作者说点什么? 我来说一句
相关热词

没有更多推荐了,返回首页

关闭
关闭
关闭