python自学打卡_05.字典,集合和序列

字典

1. 可变类型与不可变类型

  • 序列是以连续的整数为索引,与此不同的是,字典以"关键字"为索引,关键字可以是任意不可变类型,通常用字符串或数值。
  • 字典是 Python 唯一的一个 映射类型,字符串、元组、列表属于序列类型

那么如何快速判断一个数据类型 X 是不是可变类型的呢?两种方法:

  • 麻烦方法:用 id(X) 函数,对 X 进行某种操作,比较操作前后的 id,如果不一样,则 X 不可变,如果一样,则 X 可变。
  • 便捷方法:用 hash(X),只要不报错,证明 X 可被哈希,即不可变,反过来不可被哈希,即可变。
i = 1
print(id(i))  # 140732167000896
i = i + 2
print(id(i))  # 140732167000960

l = [1, 2]
print(id(l))  # 4300825160
l.append('Python')
print(id(l))  # 4300825160
  • 整数 i 在加 1 之后的 id 和之前不一样,因此加完之后的这个 i (虽然名字没变),但不是加之前的那个 i 了,因此整数是不可变类型。
  • 列表 l 在附加 'Python' 之后的 id 和之前一样,因此列表是可变类型。
print(hash('Name'))  # -9215951442099718823

print(hash((1, 2, 'Python')))  # 823362308207799471

print(hash([1, 2, 'Python']))
# TypeError: unhashable type: 'list'

print(hash({1, 2, 3}))
# TypeError: unhashable type: 'set'
  • 数值、字符和元组 都能被哈希,因此它们是不可变类型。
  • 列表、集合、字典不能被哈希,因此它是可变类型。

2. 字典的定义

字典 是无序的 键:值(key:value)对集合,键必须是互不相同的(在同一个字典之内)。

  • dict 内部存放的顺序和 key 放入的顺序是没有关系的。
  • dict 查找和插入的速度极快,不会随着 key 的增加而增加,但是需要占用大量的内存。

字典 定义语法为 {元素1, 元素2, ..., 元素n}

  • 其中每一个元素是一个「键值对」-- 键:值 (key:value)
  • 关键点是「大括号 {}」,「逗号 ,」和「冒号 :」
  • 大括号 – 把所有元素绑在一起
  • 逗号 – 将每个键值对分开
  • 冒号 – 将键和值分开

3. 创建和访问字典

【例子】

brand = ['李宁', '耐克', '阿迪达斯']
slogan = ['一切皆有可能', 'Just do it', 'Impossible is nothing']
print('耐克的口号是:', slogan[brand.index('耐克')])  
# 耐克的口号是: Just do it

dic = {'李宁': '一切皆有可能', '耐克': 'Just do it', '阿迪达斯': 'Impossible is nothing'}
print('耐克的口号是:', dic['耐克'])  
# 耐克的口号是: Just do it

通过字符串或数值作为key来创建字典。

注意:如果我们取的键在字典中不存在,会直接报错KeyError

【例子】

dic1 = {1: 'one', 2: 'two', 3: 'three'}
print(dic1)  # {1: 'one', 2: 'two', 3: 'three'}
print(dic1[1])  # one
print(dic1[4])  # KeyError: 4

dic2 = {'rice': 35, 'wheat': 101, 'corn': 67}
print(dic2)  # {'wheat': 101, 'corn': 67, 'rice': 35}
print(dic2['rice'])  # 35

【例子】通过元组作为key来创建字典,但一般不这样使用。

dic = {(1, 2, 3): "Tom", "Age": 12, 3: [3, 5, 7]}
print(dic)  # {(1, 2, 3): 'Tom', 'Age': 12, 3: [3, 5, 7]}
print(type(dic))  # <class 'dict'>

通过构造函数dict来创建字典。

  • dict() -> 创建一个空的字典。

【例子】通过key直接把数据放入字典中,但一个key只能对应一个value,多次对一个key放入 value,后面的值会把前面的值冲掉。

dic = dict()
dic['a'] = 1
dic['b'] = 2
dic['c'] = 3

print(dic)
# {'a': 1, 'b': 2, 'c': 3}

dic['a'] = 11
print(dic)
# {'a': 11, 'b': 2, 'c': 3}

dic['d'] = 4
print(dic)
# {'a': 11, 'b': 2, 'c': 3, 'd': 4}
  • dict(mapping) -> new dictionary initialized from a mapping object’s (key, value) pairs

【例子】

dic1 = dict([('apple', 4139), ('peach', 4127), ('cherry', 4098)])
print(dic1)  # {'cherry': 4098, 'apple': 4139, 'peach': 4127}

dic2 = dict((('apple', 4139), ('peach', 4127), ('cherry', 4098)))
print(dic2)  # {'peach': 4127, 'cherry': 4098, 'apple': 4139}
  • dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: dict(one=1, two=2)

【例子】这种情况下,键只能为字符串类型,并且创建的时候字符串不能加引号,加上就会直接报语法错误。

dic = dict(name='Tom', age=10)
print(dic)  # {'name': 'Tom', 'age': 10}
print(type(dic))  # <class 'dict'>

4. 字典的内置方法

  • dict.fromkeys(seq[, value]) 用于创建一个新字典,以序列 seq 中元素做字典的键,value 为字典所有键对应的初始值。

【例子】

seq = ('name', 'age', 'sex')
dic1 = dict.fromkeys(seq)
print("新的字典为 : %s" % str(dic1))  
# 新的字典为 : {'name': None, 'age': None, 'sex': None}

dic2 = dict.fromkeys(seq, 10)
print("新的字典为 : %s" % str(dic2))  
# 新的字典为 : {'name': 10, 'age': 10, 'sex': 10}

dic3 = dict.fromkeys(seq, ('小马', '8', '男'))
print("新的字典为 : %s" % str(dic3))  
# 新的字典为 : {'name': ('小马', '8', '男'), 'age': ('小马', '8', '男'), 'sex': ('小马', '8', '男')}
  • dict.keys()返回一个可迭代对象,可以使用 list() 来转换为列表,列表为字典中的所有键。

【例子】

dic = {'Name': 'lsgogroup', 'Age': 7}
print(dic.keys())  # dict_keys(['Name', 'Age'])
lst = list(dic.keys())  # 转换为列表
print(lst)  # ['Name', 'Age']
  • dict.values()返回一个迭代器,可以使用 list() 来转换为列表,列表为字典中的所有值。

【例子】

dic = {'Sex': 'female', 'Age': 7, 'Name': 'Zara'}
print("字典所有值为 : ", list(dic.values()))  
# 字典所有值为 :  [7, 'female', 'Zara']
  • dict.items()以列表返回可遍历的 (键, 值) 元组数组。

【例子】

dic = {'Name': 'Lsgogroup', 'Age': 7}
print("Value : %s" % dic.items())  
# Value : dict_items([('Name', 'Lsgogroup'), ('Age', 7)])

print(tuple(dic.items()))  
# (('Name', 'Lsgogroup'), ('Age', 7))
  • dict.get(key, default=None)返回指定键的值,如果值不在字典中返回默认值。

【例子】

dic = {'Name': 'Lsgogroup', 'Age': 27}
print("Age 值为 : %s" % dic.get('Age'))  # Age 值为 : 27
print("Sex 值为 : %s" % dic.get('Sex', "NA"))  # Sex 值为 : NA
  • dict.setdefault(key, default=None)get()方法 类似, 如果键不存在于字典中,将会添加键并将值设为默认值。

【例子】

dic = {'Name': 'Lsgogroup', 'Age': 7}
print("Age 键的值为 : %s" % dic.setdefault('Age', None))  # Age 键的值为 : 7
print("Sex 键的值为 : %s" % dic.setdefault('Sex', None))  # Sex 键的值为 : None
print("新字典为:", dic)  
# 新字典为: {'Age': 7, 'Name': 'Lsgogroup', 'Sex': None}
  • key in dict in 操作符用于判断键是否存在于字典中,如果键在字典 dict 里返回true,否则返回false。而not in操作符刚好相反,如果键在字典 dict 里返回false,否则返回true

【例子】

dic = {'Name': 'Lsgogroup', 'Age': 7}

# in 检测键 Age 是否存在
if 'Age' in dic:
    print("键 Age 存在")
else:
    print("键 Age 不存在")

# 检测键 Sex 是否存在
if 'Sex' in dic:
    print("键 Sex 存在")
else:
    print("键 Sex 不存在")

# not in 检测键 Age 是否存在
if 'Age' not in dic:
    print("键 Age 不存在")
else:
    print("键 Age 存在")

# 键 Age 存在
# 键 Sex 不存在
# 键 Age 存在
  • dict.pop(key[,default])删除字典给定键 key 所对应的值,返回值为被删除的值。key 值必须给出。若key不存在,则返回 default 值。
  • del dict[key] 删除字典给定键 key 所对应的值。

【例子】

dic1 = {1: "a", 2: [1, 2]}
print(dic1.pop(1), dic1)  # a {2: [1, 2]}

# 设置默认值,必须添加,否则报错
print(dic1.pop(3, "nokey"), dic1)  # nokey {2: [1, 2]}

del dic1[2]
print(dic1)  # {}
  • dict.popitem()随机返回并删除字典中的一对键和值,如果字典已经为空,却调用了此方法,就报出KeyError异常。

【例子】

dic1 = {1: "a", 2: [1, 2]}
print(dic1.popitem())  # (1, 'a')
print(dic1)  # {2: [1, 2]}
  • dict.clear()用于删除字典内所有元素。

【例子】

dic = {'Name': 'Zara', 'Age': 7}
print("字典长度 : %d" % len(dic))  # 字典长度 : 2
dict.clear()
print("字典删除后长度 : %d" % len(dic))  # 字典删除后长度 : 0
  • dict.copy()返回一个字典的浅复制。

【例子】

dic1 = {'Name': 'Lsgogroup', 'Age': 7, 'Class': 'First'}
dic2 = dic1.copy()
print("新复制的字典为 : ", dic2)  
# 新复制的字典为 :  {'Age': 7, 'Name': 'Lsgogroup', 'Class': 'First'}

【例子】直接赋值和 copy 的区别

dic1 = {'user': 'lsgogroup', 'num': [1, 2, 3]}

# 引用对象
dic2 = dic1  
# 深拷贝父对象(一级目录),子对象(二级目录)不拷贝,还是引用
dic3 = dic1.copy()  

print(id(dic1))  # 148635574728
print(id(dic2))  # 148635574728
print(id(dic3))  # 148635574344

# 修改 data 数据
dic1['user'] = 'root'
dic1['num'].remove(1)

# 输出结果
print(dic1)  # {'user': 'root', 'num': [2, 3]}
print(dic2)  # {'user': 'root', 'num': [2, 3]}
print(dic3)  # {'user': 'runoob', 'num': [2, 3]}
  • dict.update(dict2)把字典参数 dict2key:value对 更新到字典 dict 里。

【例子】

dic = {'Name': 'Lsgogroup', 'Age': 7}
dic2 = {'Sex': 'female', 'Age': 8}
dic.update(dic2)
print("更新字典 dict : ", dic)  
# 更新字典 dict :  {'Sex': 'female', 'Age': 8, 'Name': 'Lsgogroup'}

集合

python 中setdict类似,也是一组key的集合,但不存储value。由于key不能重复,所以,在set中,没有重复的key

注意,key为不可变类型,即可哈希的值。

【例子】

num = {}
print(type(num))  # <class 'dict'>
num = {1, 2, 3, 4}
print(type(num))  # <class 'set'>

1. 集合的创建

  • 先创建对象再加入元素。
  • 在创建空集合的时候只能使用s = set(),因为s = {}创建的是空字典。

【例子】

basket = set()
basket.add('apple')
basket.add('banana')
print(basket)  # {'banana', 'apple'}
  • 直接把一堆元素用花括号括起来{元素1, 元素2, ..., 元素n}
  • 重复元素在set中会被自动被过滤。

【例子】

basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'}
print(basket)  # {'banana', 'apple', 'pear', 'orange'}
  • 使用set(value)工厂函数,把列表或元组转换成集合。

【例子】

a = set('abracadabra')
print(a)  
# {'r', 'b', 'd', 'c', 'a'}

b = set(("Google", "Lsgogroup", "Taobao", "Taobao"))
print(b)  
# {'Taobao', 'Lsgogroup', 'Google'}

c = set(["Google", "Lsgogroup", "Taobao", "Google"])
print(c)  
# {'Taobao', 'Lsgogroup', 'Google'}
  • 去掉列表中重复的元素

【例子】

lst = [0, 1, 2, 3, 4, 5, 5, 3, 1]

temp = []
for item in lst:
    if item not in temp:
        temp.append(item)

print(temp)  # [0, 1, 2, 3, 4, 5]

a = set(lst)
print(list(a))  # [0, 1, 2, 3, 4, 5]

从结果发现集合的两个特点:无序 (unordered) 和唯一 (unique)。

由于 set 存储的是无序集合,所以我们不可以为集合创建索引或执行切片(slice)操作,也没有键(keys)可用来获取集合中元素的值,但是可以判断一个元素是否在集合中。

2. 访问集合中的值

  • 可以使用len()內建函数得到集合的大小。

【例子】

thisset = set(['Google', 'Baidu', 'Taobao'])
print(len(thisset))  # 3
  • 可以使用for把集合中的数据一个个读取出来。

【例子】

thisset = set(['Google', 'Baidu', 'Taobao'])
for item in thisset:
    print(item)

# Baidu
# Google
# Taobao
  • 可以通过innot in判断一个元素是否在集合中已经存在

【例子】

thisset = set(['Google', 'Baidu', 'Taobao'])
print('Taobao' in thisset)  # True
print('Facebook' not in thisset)  # True

3. 集合的内置方法

  • set.add(elmnt)用于给集合添加元素,如果添加的元素在集合中已存在,则不执行任何操作。

【例子】

fruits = {"apple", "banana", "cherry"}
fruits.add("orange")
print(fruits)  
# {'orange', 'cherry', 'banana', 'apple'}

fruits.add("apple")
print(fruits)  
# {'orange', 'cherry', 'banana', 'apple'}
  • set.update(set)用于修改当前集合,可以添加新的元素或集合到当前集合中,如果添加的元素在集合中已存在,则该元素只会出现一次,重复的会忽略。

【例子】

x = {"apple", "banana", "cherry"}
y = {"google", "baidu", "apple"}
x.update(y)
print(x)
# {'cherry', 'banana', 'apple', 'google', 'baidu'}

y.update(["lsgo", "dreamtech"])
print(y)
# {'lsgo', 'baidu', 'dreamtech', 'apple', 'google'}
  • set.remove(item) 用于移除集合中的指定元素。如果元素不存在,则会发生错误。

【例子】

fruits = {"apple", "banana", "cherry"}
fruits.remove("banana")
print(fruits)  # {'apple', 'cherry'}
  • set.discard(value) 用于移除指定的集合元素。remove() 方法在移除一个不存在的元素时会发生错误,而 discard() 方法不会。

【例子】

fruits = {"apple", "banana", "cherry"}
fruits.discard("banana")
print(fruits)  # {'apple', 'cherry'}
  • set.pop() 用于随机移除一个元素。

【例子】

fruits = {"apple", "banana", "cherry"}
x = fruits.pop()
print(fruits)  # {'cherry', 'apple'}
print(x)  # banana

由于 set 是无序和无重复元素的集合,所以两个或多个 set 可以做数学意义上的集合操作。

  • set.intersection(set1, set2 ...) 返回两个集合的交集。
  • set1 & set2 返回两个集合的交集。
  • set.intersection_update(set1, set2 ...) 交集,在原始的集合上移除不重叠的元素。

【例子】

a = set('abracadabra')
b = set('alacazam')
print(a)  # {'r', 'a', 'c', 'b', 'd'}
print(b)  # {'c', 'a', 'l', 'm', 'z'}

c = a.intersection(b)
print(c)  # {'a', 'c'}
print(a & b)  # {'c', 'a'}
print(a)  # {'a', 'r', 'c', 'b', 'd'}

a.intersection_update(b)
print(a)  # {'a', 'c'}
  • set.union(set1, set2...) 返回两个集合的并集。
  • set1 | set2 返回两个集合的并集。

【例子】

a = set('abracadabra')
b = set('alacazam')
print(a)  # {'r', 'a', 'c', 'b', 'd'}
print(b)  # {'c', 'a', 'l', 'm', 'z'}

print(a | b)  # {'l', 'd', 'm', 'b', 'a', 'r', 'z', 'c'}
c = a.union(b)
print(c)  # {'c', 'a', 'd', 'm', 'r', 'b', 'z', 'l'}
  • set.difference(set) 返回集合的差集。
  • set1 - set2 返回集合的差集。
  • set.difference_update(set) 集合的差集,直接在原来的集合中移除元素,没有返回值。

【例子】

a = set('abracadabra')
b = set('alacazam')
print(a)  # {'r', 'a', 'c', 'b', 'd'}
print(b)  # {'c', 'a', 'l', 'm', 'z'}

c = a.difference(b)
print(c)  # {'b', 'd', 'r'}
print(a - b)  # {'d', 'b', 'r'}

print(a)  # {'r', 'd', 'c', 'a', 'b'}
a.difference_update(b)
print(a)  # {'d', 'r', 'b'}
  • set.symmetric_difference(set)返回集合的异或。
  • set1 ^ set2 返回集合的异或。
  • set.symmetric_difference_update(set)移除当前集合中在另外一个指定集合相同的元素,并将另外一个指定集合中不同的元素插入到当前集合中。

【例子】

a = set('abracadabra')
b = set('alacazam')
print(a)  # {'r', 'a', 'c', 'b', 'd'}
print(b)  # {'c', 'a', 'l', 'm', 'z'}

c = a.symmetric_difference(b)
print(c)  # {'m', 'r', 'l', 'b', 'z', 'd'}
print(a ^ b)  # {'m', 'r', 'l', 'b', 'z', 'd'}

print(a)  # {'r', 'd', 'c', 'a', 'b'}
a.symmetric_difference_update(b)
print(a)  # {'r', 'b', 'm', 'l', 'z', 'd'}
  • set.issubset(set)判断集合是不是被其他集合包含,如果是则返回 True,否则返回 False。
  • set1 <= set2 判断集合是不是被其他集合包含,如果是则返回 True,否则返回 False。

【例子】

x = {"a", "b", "c"}
y = {"f", "e", "d", "c", "b", "a"}
z = x.issubset(y)
print(z)  # True
print(x <= y)  # True

x = {"a", "b", "c"}
y = {"f", "e", "d", "c", "b"}
z = x.issubset(y)
print(z)  # False
print(x <= y)  # False
  • set.issuperset(set)用于判断集合是不是包含其他集合,如果是则返回 True,否则返回 False。
  • set1 >= set2 判断集合是不是包含其他集合,如果是则返回 True,否则返回 False。

【例子】

x = {"f", "e", "d", "c", "b", "a"}
y = {"a", "b", "c"}
z = x.issuperset(y)
print(z)  # True
print(x >= y)  # True

x = {"f", "e", "d", "c", "b"}
y = {"a", "b", "c"}
z = x.issuperset(y)
print(z)  # False
print(x >= y)  # False
  • set.isdisjoint(set) 用于判断两个集合是不是不相交,如果是返回 True,否则返回 False。

【例子】

x = {"f", "e", "d", "c", "b"}
y = {"a", "b", "c"}
z = x.isdisjoint(y)
print(z)  # False

x = {"f", "e", "d", "m", "g"}
y = {"a", "b", "c"}
z = x.isdisjoint(y)
print(z)  # True

4. 集合的转换

【例子】

se = set(range(4))
li = list(se)
tu = tuple(se)

print(se, type(se))  # {0, 1, 2, 3} <class 'set'>
print(li, type(li))  # [0, 1, 2, 3] <class 'list'>
print(tu, type(tu))  # (0, 1, 2, 3) <class 'tuple'>

5. 不可变集合

Python 提供了不能改变元素的集合的实现版本,即不能增加或删除元素,类型名叫frozenset。需要注意的是frozenset仍然可以进行集合操作,只是不能用带有update的方法。

  • frozenset([iterable]) 返回一个冻结的集合,冻结后集合不能再添加或删除任何元素。

【例子】

a = frozenset(range(10))  # 生成一个新的不可变集合
print(a)  
# frozenset({0, 1, 2, 3, 4, 5, 6, 7, 8, 9})

b = frozenset('lsgogroup')
print(b)  
# frozenset({'g', 's', 'p', 'r', 'u', 'o', 'l'})

序列

1. 针对序列的内置函数

  • list(sub) 把一个可迭代对象转换为列表。

【例子】

a = list()
print(a)  # []

b = 'I Love LsgoGroup'
b = list(b)
print(b)  
# ['I', ' ', 'L', 'o', 'v', 'e', ' ', 'L', 's', 'g', 'o', 'G', 'r', 'o', 'u', 'p']

c = (1, 1, 2, 3, 5, 8)
c = list(c)
print(c)  # [1, 1, 2, 3, 5, 8]
  • tuple(sub) 把一个可迭代对象转换为元组。

【例子】

a = tuple()
print(a)  # ()

b = 'I Love LsgoGroup'
b = tuple(b)
print(b)  
# ('I', ' ', 'L', 'o', 'v', 'e', ' ', 'L', 's', 'g', 'o', 'G', 'r', 'o', 'u', 'p')

c = [1, 1, 2, 3, 5, 8]
c = tuple(c)
print(c)  # (1, 1, 2, 3, 5, 8)
  • str(obj) 把obj对象转换为字符串

【例子】

a = 123
a = str(a)
print(a)  # 123
  • len(s) 返回对象(字符、列表、元组等)长度或元素个数。
    • s – 对象。

【例子】

a = list()
print(len(a))  # 0

b = ('I', ' ', 'L', 'o', 'v', 'e', ' ', 'L', 's', 'g', 'o', 'G', 'r', 'o', 'u', 'p')
print(len(b))  # 16

c = 'I Love LsgoGroup'
print(len(c))  # 16
  • max(sub)返回序列或者参数集合中的最大值

【例子】

print(max(1, 2, 3, 4, 5))  # 5
print(max([-8, 99, 3, 7, 83]))  # 99
print(max('IloveLsgoGroup'))  # v
  • min(sub)返回序列或参数集合中的最小值

【例子】

print(min(1, 2, 3, 4, 5))  # 1
print(min([-8, 99, 3, 7, 83]))  # -8
print(min('IloveLsgoGroup'))  # G
  • sum(iterable[, start=0]) 返回序列iterable与可选参数start的总和。

【例子】

print(sum([1, 3, 5, 7, 9]))  # 25
print(sum([1, 3, 5, 7, 9], 10))  # 35
print(sum((1, 3, 5, 7, 9)))  # 25
print(sum((1, 3, 5, 7, 9), 20))  # 45
  • sorted(iterable, key=None, reverse=False) 对所有可迭代的对象进行排序操作。
    • iterable – 可迭代对象。
    • key – 主要是用来进行比较的元素,只有一个参数,具体的函数的参数就是取自于可迭代对象中,指定可迭代对象中的一个元素来进行排序。
    • reverse – 排序规则,reverse = True 降序 , reverse = False 升序(默认)。
    • 返回重新排序的列表。

【例子】

x = [-8, 99, 3, 7, 83]
print(sorted(x))  # [-8, 3, 7, 83, 99]
print(sorted(x, reverse=True))  # [99, 83, 7, 3, -8]

t = ({"age": 20, "name": "a"}, {"age": 25, "name": "b"}, {"age": 10, "name": "c"})
x = sorted(t, key=lambda a: a["age"])
print(x)
# [{'age': 10, 'name': 'c'}, {'age': 20, 'name': 'a'}, {'age': 25, 'name': 'b'}]
  • reversed(seq) 函数返回一个反转的迭代器。
    • seq – 要转换的序列,可以是 tuple, string, list 或 range。

【例子】

s = 'lsgogroup'
x = reversed(s)
print(type(x))  # <class 'reversed'>
print(x)  # <reversed object at 0x000002507E8EC2C8>
print(list(x))
# ['p', 'u', 'o', 'r', 'g', 'o', 'g', 's', 'l']

t = ('l', 's', 'g', 'o', 'g', 'r', 'o', 'u', 'p')
print(list(reversed(t)))
# ['p', 'u', 'o', 'r', 'g', 'o', 'g', 's', 'l']

r = range(5, 9)
print(list(reversed(r)))
# [8, 7, 6, 5]

x = [-8, 99, 3, 7, 83]
print(list(reversed(x)))
# [83, 7, 3, 99, -8]
  • enumerate(sequence, [start=0])

【例子】用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般用在 for 循环当中。

seasons = ['Spring', 'Summer', 'Fall', 'Winter']
a = list(enumerate(seasons))
print(a)  
# [(0, 'Spring'), (1, 'Summer'), (2, 'Fall'), (3, 'Winter')]

b = list(enumerate(seasons, 1))
print(b)  
# [(1, 'Spring'), (2, 'Summer'), (3, 'Fall'), (4, 'Winter')]

for i, element in a:
    print('{0},{1}'.format(i, element))
  • zip(iter1 [,iter2 [...]])
    • 用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的对象,这样做的好处是节约了不少的内存。
    • 我们可以使用 list() 转换来输出列表。
    • 如果各个迭代器的元素个数不一致,则返回列表长度与最短的对象相同,利用 * 号操作符,可以将元组解压为列表。

【例子】

a = [1, 2, 3]
b = [4, 5, 6]
c = [4, 5, 6, 7, 8]

zipped = zip(a, b)
print(zipped)  # <zip object at 0x000000C5D89EDD88>
print(list(zipped))  # [(1, 4), (2, 5), (3, 6)]
zipped = zip(a, c)
print(list(zipped))  # [(1, 4), (2, 5), (3, 6)]

a1, a2 = zip(*zip(a, b))
print(list(a1))  # [1, 2, 3]
print(list(a2))  # [4, 5, 6]
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页