一、TX2端
1.在TX2上安装git和cmake
sudo apt-get install git cmake
2. 下载并运行jetson-inference
jetson-inference不是很好下载,我试了两天,最后在Windows下科学上网下载到了,给个我下载好的百度云链接吧:
链接:https://pan.baidu.com/s/1hSrWSk3Wy9qzEGFZke8yLQ 密码:dlms
git clone https://github.com/dusty-nv/jetson-inference.git
cd jetson-inference
mkdir build
cd build
cmake ..
到这儿会卡住,也是多试几次就好了,这个要看nvidia的网络状况。这时会调用脚本CMakePrebuild.sh去下载网络模型和结构文件,也可以自己下载完以后解压到jetson-inference/data/networks目录。
make
.按照参考1中的示例运行例程
(1)识别
./imagenet-console orange_0.jpg output_0.jpg
会将orange_0.jpg识别的结果保存在output_0.jpg中,其中要用到的googlenet.prototxt和bvlc_googlenet.caffemodel并不是networks文件夹中自带的,需要自己下载以后放入其中,否则会报错:
为了方便,再给个下好的网盘链接:
链接:https://pan.baidu.com/s/16Nc7SjYJc5FN5xKitWAn7Q 密码:qjhl
运行结果:
(2)检测
./imagenet-camera googlenet
结果:
可以达到10帧/秒,把我的马里奥识别成了头盔2333
(3)使用自己的usb摄像头
把jetson-inference/imagenet-camera/imagenet-camera.cpp中的
define DEFAULT_CAMERA -1(使用 /dev/video0,板载镜头)改成 define DEFAULT_CAMERA 1(使用 /dev/video1,usb摄像头)
cd ~/jetson-inference/build
make clean
cmake ..
make
这是我的日历检测结果:
(4)使用自己训练好的模型进行测试
把相应的地址进行更换即可
cd ~/jetson-inference/build/aarch64/bin/
./imagenet-camera \
-model /home/nvidia/***/caffe_model_iter_***.caffemodel \
-prototxt /home/nvidia/project/***/***.prototxt \
-labels ***.txt -input_blob data -output_blob prob
参考:
1.吉浦迅-【入门篇】Jetson TX2深度学习Inference初体验