IBM发布基于内存的人工智能计算架构 12月1日美国IBM公司发布消息称,该公司研究人员实现了在内存计算技术上的一次重大突破,发明了一种可以运行在100万个相变内存(PCM)上的无监督式机器学习算法,有望比传统计算机在计算速度和能耗利用效率方面提升200倍,非常适合实现人工智能应用中的高密度、低功耗、大规模的并行计算系统。这一成果发表在《自然·通讯》杂志上。内存计算或可计算储存,是近年来新兴的一个概念,其原理是
分布式系统distributed-system资料 分布式系统(Distributed System)资料希望转载的朋友,你可以不用联系我.但是一定要保留原文链接,因为这个项目还在继续也在不定期更新.希望看到文章的朋友能够学到更多.《Reconfigurable Distributed Storage for Dynamic Networks》介绍:这是一篇介绍在动态网络里面实现分布式系统重构的paper.论文的作者(导师)
王川: 深度学习有多深, 学了究竟有几分? 上一篇文章提到了数据挖掘、机器学习、深度学习的区别:http://www.cnblogs.com/charlesblc/p/6159355.html深度学习具体的内容可以看这里:参考了这篇文章:https://zhuanlan.zhihu.com/p/20582907?refer=wangchuan 《王川: 深度学习有多深, 学了究竟有几分? (一)》笔记:神经网络的研
5G时代的智能边缘计算AI-EC平台 5G时代的智能边缘计算AI-EC平台转自http://www.ccf.org.cn/c/2017-10-20/617329.shtml阅读量:1910月20日收藏本文2017年9月初华为透露:首款搭载AI芯片的商务手机将于10月发布并提出:Mobile AI=On_Device AI + Cloud AI。无独有偶,一周后苹果公司也发布了搭载A11可以人脸识别的
Yarn资源调度策略 YARN资源调度策略转载2016-08-21 21:23:56标签:yarnYARN虽然是从MapReduce发展而来,但其实更偏底层,它在硬件和计算框架之间提供了一个抽象层,用户可以方便的基于YARN编写自己的分布式计算框架,而不用关心硬件的细节。由此可以看出YARN的核心功能:资源抽象、资源管理(包括调度、使用、监控、隔离等等)。从某种程度上说YARN类似于
思考与学习方法 1.学习的时候,定义不同思考维度。让思维不要无路可循,利用机器学习的方法,定义多个维度去学习、思考。 如如何学习踢足球,定义维度 (转身,护球,背身拿球,传球...),依次学习在不同维度的方法。 维度定义的范围大小,实际上跟人的学习能力有关,最简单的学习能力就是反射,(输入1, 输出1), 稍微复杂可以(输入1,输出3)。最初逻辑建立都是(1 v 1 ),熟练之后,可以跳转多步逻辑 ,做
Spark内核的10大问题 问题1:reduce task数目不合适解决方案:需要根据实际情况调整默认配置,调整方式是修改参数spark.default.parallelism。通常的,reduce数目设置为core数目的2-3倍。数量太大,造成很多小任务,增加启动任务的开销;数目太小,任务运行缓慢。所以要合理修改reduce的task数目即spark.default.parallelism问题2:shuffle
sort-based shuffle的核心:org.apache.spark.util.collection.ExternalSorter 依据Spark 1.4版在哪里会用到它ExternalSorter是Spark的sort形式的shuffle实现的关键。SortShuffleWriter使用它,把RDD分区中的数据写入文件。 override def write(records: Iterator[Product2[K, V]]): Unit = { if (dep.mapSideCom
spark源码之Job执行(1)stage划分与提交 目录(?)[+]1 从reduce看Job执行流程1.1 reduce操作以reduce操作为例,看看作业执行的流程def reduce(f: (T, T) => T): T = withScope { val cleanF = sc.clean(f) val reducePartition: Iterator[T] => Option[T] = iter
B-tree/B+tree/B*tree B~树 1.前言:动态查找树主要有:二叉查找树(Binary Search Tree),平衡二叉查找树(Balanced Binary Search Tree),红黑树 (Red-Black Tree ),B-tree/B+-tree/ B*-tree(B~Tree)。前三者是典型的二叉查找树结构,其查找的时间复杂度O(log2N)与树的深度相关,那么降低树的深
稀疏矩阵存储格式总结+存储效率对比:COO,CSR,DIA,ELL,HYB 稀疏矩阵是指矩阵中的元素大部分是0的矩阵,事实上,实际问题中大规模矩阵基本上都是稀疏矩阵,很多稀疏度在90%甚至99%以上。因此我们需要有高效的稀疏矩阵存储格式。本文总结几种典型的格式:COO,CSR,DIA,ELL,HYB。 (1)Coordinate(COO)这是最简单的一种格式,每一个元素需要用一个三元组来表示,分别是(行号,列号,数值),对应上图右边的一列。这种方式简单,但
大数据平台系统概览 开源(Open Source)用之于大数据技术,其作用有二:一方面,在大数据技术变革之路上,开源在众人之力和众人之智推动下,摧枯拉朽,吐故纳新,扮演着非常重要的推动作用。另一方面,开源也给大数据技术构建了一个异常复杂的生态系统。每一天,都有一大堆“新”框架、“新”类库或“新”工具,犹如雨后春笋般涌出,乱花渐欲“迷”人眼。为了掌控住这些“新玩意”,数据分析的达人们不得不“殚精竭虑”地“学而时习之
Linux下JNI调用简单实例操作全过程 开发环境:Linux(Ubuntu 11.04) + JDK 7实例说明:利用JNI调用本地代码的方法来实现一个计算Int数组总和的功能使用JNI调用本地代码,整个开发流程主要包括以下几个步骤:1、创建一个Java类(IntArray.java);2、使用javac编译该类(生成IntArray.class);3、使用javah -jni 产生头文件(生成IntArra
windows下搭建Spark1.6源码调试阅读环境 **零.看源代码宗旨** 1.有目的性,要知道自己看什么。 2.先看系统流程,知道各个组件功能及交互关系。 3.深入某个组件,比如yarn资源调度平台。 4.准备好纸笔,边看边写边画一、相关组件及安装顺序0.默认jdk1.8,java已经安装1.scala 2.10.6[download](http://www.scala-lang.org/download
安装Gensim,测试node2vec 0.pip install wheel1.从网上下载与python27对应的 numpy-1.12.1+mkl-cp27-cp27m-win32.whl,用pip命令安装2.pip install scipy3.pip install gensim常见问题:1.ImportError: cannot import name NUMPY_M
Machine Learning Record(1-1)Polynomial curve fitting 本系列文章是本人阅读 《Partern recognition and Machine Learning》系列文章一文章一 多变量曲线拟合1.1Polynomial curve fittingReal model : sin(2πx).We sample points from real model with a Gaussian model no