随着我们进入一个人工智能(AI)和机器学习(ML)几乎渗透到每个领域的时代,了解这些技术的变革潜力及其固有挑战至关重要。四个关键领域值得特别关注:人工智能驱动的营销策略、道德人工智能发展、工作的未来以及机器学习在医疗保健中的应用。这些领域概括了承诺、陷阱和伦理考虑,这些因素将定义人工智能在2025年及以后塑造社会的作用。
下面,我分享了我对组织和政策制定者如何在创造有意义的积极影响的同时,深思熟虑地利用这些技术的看法。
1、2025年人工智能驱动的营销策略
到2025年,人工智能有望推动一种更加数据驱动、个性化的营销方式。目前的市场研究估计,通过自动化任务和改进目标定位,利用人工智能进行营销的组织可以将销售生产力提高40%,营销开销降低25%。
真实世界的例子
- Netflix的推荐引擎:据报道,通过采用人工智能驱动的个性化服务,Netflix每年在客户保留方面节省了约10亿美元。他们的算法不断为2亿多全球用户优化建议,说明了大规模超个性化的潜力。
- 星巴克的预测分析:星巴克利用人工智能优化店铺位置和菜单建议,提高了每位顾客的平均消费。他们的忠诚度计划利用机器学习实时定制促销活动,提高销售额和客户满意度。
机遇与挑战
- 机会:当透明和合乎道德地使用时,超个性化、实时受众细分和零方数据(消费者共享数据)可以增强信任和品牌忠诚度。
- 挑战:隐私问题仍然至关重要。营销人员必须应对复杂的监管环境(如GDPR、CCPA),并在数据收集与消费者同意和信任之间取得平衡。
负责任的人工智能营销需要与透明的数据实践保持一致。以道德方式处理消费者数据并投资于强有力的网络安全措施的品牌将成为市场领导者,与客户建立更深层次、基于信任的关系。
2、伦理人工智能发展:不可谈判的最佳实践
随着人工智能系统扩展到高风险场景——贷款审批、招聘、司法分析和医疗保健——道德不再是可选的。报告显示,近50%的人工智能专业人员在模型开发中遇到了与道德或偏见相关的问题。尽早并持续地解决这些问题对于充分发挥人工智能的潜力至关重要。
真实世界的例子
- 亚马逊的招聘工具:亚马逊发现人工智能驱动的招聘平台系统性地偏爱男性候选人后,不得不放弃该平台。这个案例强调了有偏见的训练数据如何导致歧视性算法。
- 欧盟人工智能法案:欧盟正在推动根据风险类别对人工智能进行监管,旨在确保医疗保健、金融和运输等行业使用的算法的透明度和问责制。
机遇与挑战
- 机会:明确的偏见缓解、数据保护和问责制框架可以促进公众信任,刺激可持续创新。
- 挑战:当深度学习模型充当“黑匣子”时,实现可解释的人工智能(XAI)是困难的。必须建立监督委员会、模型审计和透明的治理流程,以确保公平。
伦理人工智能既是道德要求,也是竞争差异化因素。积极解决偏见、维护数据隐私和支持透明算法的组织不仅会遵守不断发展的法规,还会为负责任的创新设定行业基准。
3、人工智能工作的未来
最紧迫的社会辩论之一围绕着人工智能将如何重塑劳动力市场展开。根据世界经济论坛《2020年就业前景报告》,到2025年,人工智能和机器人技术可能会取代8500万个工作岗位,但9700万个新职位可能会出现在适应性更强、以技术为重点的行业。
角色和技能的扩展视图
- 工作转型与淘汰:人工智能驱动的自动化使员工摆脱了重复性任务,如数据输入或基本报告,使他们能够专注于创造性的问题解决、战略规划和人际关系。
- 新兴职位类别:“机器学习伦理学家”、“数据隐私官”或“人工智能商业翻译”等职位突出了组织将需要的不断发展的混合技能。
- 全球和社会背景:人工智能采用的速度因地区而异。新兴经济体经常经历跨越效应,采用尖端解决方案来弥补传统基础设施的差距。然而,他们也可能在劳动力再培训和资本投资方面面临挑战。
挑战和潜在解决方案
- 提升技能和重新技能:需要持续的学习计划来确保员工适应新的工具和方法。政府和非政府组织可以与私营部门领导人合作,资助大规模的数字扫盲和编码计划。
- 心理和社会影响:快速的技术变化会导致焦虑和工作不安全感。透明的沟通、包容性的变革管理和心理健康支持对于稳定的过渡至关重要。
人工智能不仅取代了工作;它正在重塑它们。重视持续技能发展、保持开放沟通、重视以人为本的能力(如创造力和同理心)的领导者将创建有弹性、面向未来的组织。
4、机器学习在医疗保健中的应用
人工智能最有影响力的用途之一是医疗保健,及时准确的决策可以真正拯救生命。美国医学协会(AMA)指出,人工智能驱动的诊断可以将放射学和病理学等某些领域的医疗错误减少50%,并将患者分诊速度提高30%。
真实世界的例子
- DeepMind的人工智能用于眼部疾病检测:使用深度学习,该系统可以在视网膜扫描中检测到50多种威胁视力的疾病,准确率为94%,提供早期干预。
- 巴比伦健康的远程医疗:巴比伦健康的人工智能分诊系统为全球患者提供帮助,特别是在服务不足的地区。它的对话界面引导他们找到合适的专家或服务,减少等待时间和系统过载。
机遇与挑战
机会:
- 预测性诊断:机器学习模型能够识别早期疾病标志物,从而实现主动治疗。
- 机器人手术:人工智能辅助机器人减少了误差范围,改善了患者的治疗效果。
- 远程医疗和虚拟护理:人工智能聊天机器人和远程监控可以扩大获得优质护理的机会,特别是在农村地区。
挑战:
- 数据隐私:医疗信息高度敏感,数据泄露会削弱患者的信任。
- 临床算法中的偏差:如果模型主要在同质数据上训练,代表性不足的群体可能会得到较差的诊断。
人工智能在医疗保健领域的成功取决于以患者为中心的设计、强大的数据治理和公平的访问。组织必须让不同的患者群体参与进来,严格测试模型的公平性,并确保遵守健康数据法规以建立信任。
描绘负责任的人工智能未来
人工智能和机器学习正在重塑行业,从高度个性化的营销活动到拯救生命的医疗干预。然而,通往2025年的道路并非没有障碍——公众信任、数据完整性和监管考虑需要深思熟虑的行动。选择以透明度、道德设计和全球包容性为基础的负责任创新道路的组织和政府,将有助于实现人工智能的全部潜力,同时最大限度地降低其风险。