python之列表

列表
列表是Python中最基本也是最常用的数据结构之一。列表中的每个元素都被分配一个数字作为索引,用来表示该元素在列表内所排在的位置。第一个元素的索引是0,第二个索引是1,依此类推。
Python的列表是一个有序可重复的元素集合,可嵌套、迭代、修改、分片、追加、删除,成员判断。
从数据结构角度看,Python的列表是一个可变长度的顺序存储结构,每一个位置存放的都是对象的指针。
比如,对于这个列表 alist = [1, “a”, [11,22], {“k1”:”v1”}],其在内存内的存储方式是这样的:
在这里插入图片描述
1. 创建方式
创建一个列表,只要把逗号分隔的不同的数据项使用方括号括起来即可。列表内的元素,可以是其它任意类型的数据,可多层嵌套列表,元素个数无限制。
在这里插入图片描述
2. 访问列表内的元素
列表从0开始为它的每一个元素顺序创建下标索引,直到总长度减一。要访问它的某个元素,以方括号加下标值的方式即可。注意要确保索引不越界,一旦访问的 索引超过范围,会抛出异常。所以,一定要记得最后一个元素的索引是len(list)-1。

3. 修改元素的值
直接对元素进行重新赋值。
4. 删除元素
使用del语句或者remove(),pop()方法删除指定的元素。
5. 列表的特殊操作
除了以上的常规操作,列表还有很多有用的其它操作。
语句 结果 描述
[1, 2, 3]+ [4, 5, 6] [1, 2, 3, 4, 5, 6] 组合两个列表
[‘Hi!’] * 4 [‘Hi!’, ‘Hi!’, ‘Hi!’, ‘Hi!’] 列表的乘法
3 in [1, 2, 3] True 判断元素是否存在于列表中
for x in [1, 2, 3]: print x, 1 2 3 迭代列表中的每个元素
6. 针对列表的常用函数
Python有很多内置函数,可以操作列表。
函数作用
len(list) 返回列表元素个数,也就是获取列表长度
max(list) 返回列表元素最大值
min(list) 返回列表元素最小值
list(seq) 将序列转换为列表
**针对列表的常用函数小总结:**这些操作都不会修改列表本身,属于安全操作。max、min在Python3中,不能对不同类型的对象进行大小的比较了。
7. 切片
切片指的是对序列进行截取,选取序列中的某一段。
切片的语法是: list[start:end]
在这里插入图片描述
8. 多维列表(嵌套列表)
列表可以嵌套列表,形成多维列表,形如矩阵。其元素的引用方法是list[i][j][k]…。当然,也可以嵌套别的数据类型。
9. 列表的遍历
列表有好几种遍历方式:
列表的内置方法

下图中的方法是列表专有的内置方法。
方法和作用
append(obj) 在列表末尾添加新的对象
count(obj) 统计某个元素在列表中出现的次数
extend(seq) 在列表末尾一次性追加另一个序列中的多个值(用新列表扩展原来的列表)
index(obj) 从列表中找出某个值第一个匹配项的索引位置
insert(index, obj) 将对象插入列表
pop(obj=list[-1]) 移除列表中的一个元素(默认最后一个元素),并且返回该元素的值
remove(obj) 移除列表中某个值的第一个匹配项
reverse() 反向列表中元素
sort([func]) 对原列表进行排序
copy() 复制列表
clear() 清空列表,等于del lis[:]
注意:其中的类似 append,insert, remove 等方法会修改列表本身,并且没有返回值(严格的说是返回None)。
11. 将列表当做堆栈
Python的列表特别适合也很方便作为一个堆栈来使用。堆栈是一种特定的数据结构,最先进入的元素最后一个被释放(后进先出)。将列表的表头作为栈底,表尾作为栈顶,就形成了一个堆栈。用列表的append()方法可以把一个元素添加到堆栈顶部(实际上就是在列表的尾部添加一个元素)。用不指定索引的pop()方法可以把一个元素从堆栈顶释放出来(也就是从列表尾部弹出一个元素)。例如:

列表在内存内部是顺序存储结构的,所以在其尾部的添加和删除动作,也就是append和pop方法的效率非常高,具备随机存取速度,也就是O(1)的时间复杂度,因此用作堆栈是再合适不过了。
12. 将列表当作队列
也可以把列表当做队列用。队列是一种先进先出的数据结构。但是用Python的列表做队列的效率并不高。因为,虽然在列表的最后添加或者弹出元素速度很快,但在列头部弹出第一个元素的速度却不快(因为所有其他的元素都得跟着一个一个地往左移动一位)。通常我们使用queue.Queue作为单向队列,使用collections.deque作为双向队列。

©️2020 CSDN 皮肤主题: 游动-白 设计师:上身试试 返回首页