论文解读——High-Resolution PolSAR Scene Classification With Pretrained Deep Convnets

原文:'High-Resolution PolSAR Scene Classification With Pretrained Deep Convnets and Manifold Polarimetric Parameters'.


摘要:在PolSAR数据分析中,如何联合使用空间和极化信息一直以来都是一个开放的话题。受益于先进的结构和大规模可视化数据集,深度卷积神经网路能够生成高层空间特征,在图像分析领域获得当前最好的性能。然而,由于PolSAR数据不仅是多个通道夫人,而且还是复数值,所以现有的CNN模型无法轻易用来处理PolSAR数据。为了解决这个问题,我们发展了新的数据集来探索CNN在PolSAR场景分类中的潜能。我们发现这些CNN模型在每一层学习固定的语义信息,并且通过改变中层的滤波器来适应不同的数据类型。对于PolSAR数据,卷积滤波器倾向于在分离的颜色生成特征(这种特性使得网络可以区分不同的极化机制),而不是检测颜色模式。因此,本文提出一种集成的迁移学习框架,把流行极化分解融入到DCNN中,同时保留预先学习到的空间分析能力。不同的极化参数能够反映对不同目标的极化机制,引进新的判别特征来提高目标识别力。所提出的框架获得了99.5%的验证准确率,并且可能有益于PolSAR数据的广泛应用。

1. 引言

在过去的几年中,深度学习已经成为计算机科学领域最流行的一种技术,它有时能够以某种方式解决人类无法理解的复杂性问题。深度学习仍然在快速发展中,但是它的潜能不容易理解。深度学习几乎渗透到包括遥感在内的每一个领域。PolSAR是遥感领域的一个重要分支。SAR不受天气日照的影响,可以采集全空间和时间图像序列而不被云层所干扰,这种特性不仅对于诸如灾难监测等实时的应用非常关键,而且比光学传感器更适合于时间序列的分析。在SAR应用中,图像解译主要依赖于极化特性逐像素点的PolSAR参数通常被采用,但是空间特征的使用是非常缺乏的,而这种空间特性可以揭示高分辨率图像中所包含的丰富信息。高分辨率的SAR图像不仅受到相干斑噪声的影响,而且还会包含不连续的人工建筑结构。此外,极化散射严重依赖于视角,角度的微小变化都会改变极化机制。例如不同的建筑会有不同的散射机制。这些问题使得传统的机器学习方法和手工的特征失效,从而严重限制了PolSAR数据的应用

深度卷积神经网络能够获得高层的复杂空间模式,这种特性使得CNN在图像解译中得到广泛应用。先进的CNN模型在计算机视觉领域具有较强的竞争力,诸如ResNets、DenseNets等含有上百个层和百万个可训练参数的模型。训练这些大型网络,我们需要大量的样本。但是截至目前,大部分遥感数据的样本是有限的,在这种情况下我们推荐迁移学习。所谓迁移学习,就是使用一个网络预先学习到的知识来解决一个新问题。当训练样本有限时,这种方法尤其有效。使用迁移学习的方法,网络在预先训练好的权值的基础上更新参数,比从头开始训练学习得更快。自从2015年以来,使用光学图像预训练好的CNN模型已经被迁移过来学习光学遥感图像。但是,这种思想不能简单地借鉴过来应用于PolSAR数据,因为PolSAR数据不仅是多通道的,而且还属于复数域。使用光学图像预训练的DCNN只能考虑后向散射密度,而极化相位会被完全忽略

已有工作:

zhou等人先是引入了6通道的DCNN,使用协方差作为输入;而后又提出CV-CNN来充分利用极化信息,这种网络的权值和输入都是复数域的。

在这篇文章中,我们通过回答以下问题来认知深度学习在PolSAR处理中的潜能:

1)CNN是如何建立对PolSAR数据理解的?

2)我们如何联合地把极化信息和高层次空间特征应用于PolSAR数据分析中?

与农作物分类和建筑区检测等简单问题相比,我们考虑的是一个更具挑战性的问题——场景分类。场景分类是高分辨率遥感图像分析的一个关键问题,也是语义分割、目标检测、图像标注等其他高级应用的重要基础

由于具有较高的空间分辨率,一个场景中可能会包含多种表面变化多样的目标,而不同的场景中可能具有相似的目标。此外,每一种地面目标可能会以变化的位置随机分布于场景中,使得对地面目标的判别更困难

2. 新的高分辨率极化数据集

用于场景分类的高分辨率PolSAR数据集是非常少的,因为PolSAR数据源通常是商业化且昂贵的。

新的数据集中每个样本由四组参数表示,包括以下信息:

1)S矩阵的幅度(3维-data set 1)只考虑了极化散射密度。

2)三种高级的极化参数:

    a)最原始的极化描述(9维):协方差矩阵C的9个元素的实部。

    b)基于特征值的特征分解(3维):H-A-α

    c)非相干的极化分解(3维):Yamaguchi分解:奇次散射、偶次散射、体散射

使用S矩阵的密度表示原始的自然森林、植被和湿地时,它们看起来比较相似,但是用极化参数表示时可以明显把它们区分开来

3. 探索DCNNs在PolSAR场景分类中的应用

3.1 基于极化后向散射幅度和三种在ImageNet上预训练的CNN模型的场景分类

为了检验CNN模型是否能够有效地从高分辨率的PolSAR图像中生成空间特征,我们使用三个经典的在imageNet数据集上预先训练好的模型对data set 1进行分类。

1)VGG-16:

2)ResNet-50:在遥感领域最受欢迎的网络模型

3)DenseNet-121:在计算机视觉的各领域取得最好的性能。但是因为遥感数据量很小,所以选择网络模型的时候应该选择小规模或者中等规模的网络。

基于CNN的像素点分类会有大量的冗余——使用FCN

在迁移学习中,我们代替最后的softmax层,其输出个数换成了本实验数据集对应的种类数,我们使用一个较小的学习率对网络进行微调,以便保留预先学习到的知识。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值