A Visual Introduction to Machine Learning

机器学习可视化不错的介绍。 链接:A Visual Introduction to Machine Learning

2015-07-31 22:43:47

阅读数:19

评论数:0

CMU machine learning class 10-701 by Alex Smola

卡内基梅隆大学课程10-701《机器学习》视频大全 主讲:Alex Smola 链接:http://www.computervisiontalks.com/tag/machine-learning-class-10-701/

2015-07-22 06:44:09

阅读数:78

评论数:0

Machine Learning for Developers by Mike de Waard

写给开发者的机器学习指南。包括两部分:The first section ‘The global idea of machine learning’ contains all important concepts and notions you need to know about to get ...

2015-07-22 06:33:59

阅读数:16

评论数:0

NVIDIA即将推出的deep learning 免费课程

课程总共有5个 topic,每个 topic 分为 class 和 office hour 两个单元,每个单元各一个小时,涵盖NVIDIA的DIGITS,以及Caffe, Theano, Torch等主流开源工具。传送门

2015-07-20 13:42:50

阅读数:22

评论数:0

以色列Forter公司:用行为监测算法自动识别欺诈交易

Forter首席营销官比尔•齐尔克(Bill Zielke): Forter的以色列本土研发技术通过机器学习来判断交易是否存在问题。Forter系统可利用大数据库中的网站用户行为判断某个特定消费者的行为是否符合合法交易的特征或者判断该顾客是否有可能是个骗徒。 很多数据都可表明交易是否...

2015-07-17 09:58:11

阅读数:86

评论数:0

深度学习是未来机器翻译研究的技术热点

虽然机器翻译在过去的二十年中得到了前所未有的发展,但是仍然有许多问题值得探索,离真正实现机器翻译有很长的路要走,主要有以下三个方面的问题。问题层面机器翻译研究需要更加关注“机器翻译”自身的问题。机器翻译是一个交叉学科,它依赖计算机、数学、语言学等多个学科的融合。机器翻译的研究也往往会借鉴很多其他学...

2015-07-15 16:46:41

阅读数:141

评论数:0

Google DeepMind的新论文: Spatial Transformer Networks

@金连文: 在CNN中引入Spatial Transformation 模块,自动学习变换参数,例如仿射变换的6个参数,从而能进行达到Rotation/translation invariant等识别效果。在MNIST、SVHN、CUB-200-2011 Bird等多个数据集上得到很不错的结果。...

2015-07-15 16:43:09

阅读数:143

评论数:0

Eric Xing:Petuum 1.1最后一次定期完全开源新版发布

Eric Xing,CMU Prof.:刚发布Petuum 1.1最后一次定期完全开源新版发布,包括目前开源机器学习库,和可编程并行平台,今后将转入开源,非开源并进阶段,后者将提供更强版本针对大数据客户云端垂直产品,包括10亿维级点击率预测,百万主题监督和非监督主题模型,超大型协同过滤系统,深度学...

2015-07-09 16:58:42

阅读数:81

评论数:0

Eric Xing:Petuum 1.1最后一次定期完全开源新版发布

Eric Xing,CMU Prof.:刚发布Petuum 1.1最后一次定期完全开源新版发布,包括目前开源机器学习库,和可编程并行平台,今后将转入开源,非开源并进阶段,后者将提供更强版本针对大数据客户云端垂直产品,包括10亿维级点击率预测,百万主题监督和非监督主题模型,超大型协同过滤系统,深度学...

2015-07-09 09:25:42

阅读数:19

评论数:0

百度深度学习加速基于FPGA而不是GPU集群

中国搜索引擎和网络服务公司百度(使用深度神经网络来提供语音识别、图像搜索,并服务于语境广告)决定生产环境服务器中使用FPGA而不是GPU。百度高级架构师Jian Ouyang表示,虽然个别的GPU提供峰值浮点性能,在百度使用的深度神经网络的应用中,相比相同的性能水平FPGA消耗更少的功率,并可以安...

2015-07-09 09:16:50

阅读数:264

评论数:0

关于dropout的有趣的进化论解释

训练神经网络时,使用dropout技术来防止网络的过拟合。我们这里且不谈这个技术的细节,但就这项技术的有趣的生物进化论解释了解下。自然界的高等生物进化出了两性繁殖,其原因可以解释为使得变异的基因能散播到整个种族中去。但是,dropout认为两性繁殖并不仅是为了让基因更容易地散播,两性繁殖的策略还提...

2015-07-09 09:11:08

阅读数:30

评论数:0

模仿游戏的真相,看图灵自己的阐述

@吴甘沙: 模仿游戏的真相,看图灵自己的阐述。图灵事实上很幽默,他认为: 不需要给予“思考”定义 判断机器是否能思考的最好方法就是与它交流 机器获得类人智能至少需要100年(1952年起) 图灵测试有bug(后来用中文屋批评他其实不fair,因为他早想到了) 电脑不必跟人脑一样 原文链接:Wha...

2015-07-08 09:27:58

阅读数:43

评论数:0

深度对话贾扬清:Caffe与深度学习的现在与未来

在深度学习(Deep Learning)的热潮下,Caffe作为一个高效、实用的深度学习框架受到了广泛的关注。了解Caffe研发的背景、愿景、技术特色、路线图及其开发者的理念,对于我们选择合适的工具更好地进行深度学习应用的迭代开发大有裨益。《程序员》记者近日深度对话Caffe作者贾扬清,剖析Caf...

2015-07-08 09:24:43

阅读数:37

评论数:0

余凯要做NPU,神经处理器时代何时到来?

人工智能和深度学习现在确实非常火热,深度学习也需要一个很好的硬件平台,不过未来会是余凯的NPU吗?36kr的报道: Horizon Robotics的想法是将专门化的人工智能算法逻辑实现在芯片里。简单的说,他们要做的就是把深度神经网络等各种复杂的人工智能算法放置在芯片中。余凯将其称之为“ 机器...

2015-07-06 13:52:57

阅读数:28

评论数:0

Andrew Ng就Google错误标签事件发表评论:误伤

Andrew Ng就Google错误标签事件发表评论,大意是说:这是一个非常不幸的错误,但今天计算机视觉处在起步阶段,这只是我们面临的无数个错误中的一个,而不是刻意搞错。Google, Facebook, Baidu,等公司,都一直在努力。希望不要在看到AI和DL被大肆渲染,而是关注进步。 链接...

2015-07-03 16:01:19

阅读数:19

评论数:0

Palladium:基于Scikit-Learn的开源预测分析服务框架

Palladium provides means to easily set up predictive analytics services as web services. It is a pluggable framework for developing real-world machin...

2015-07-03 09:47:23

阅读数:17

评论数:0

深度学习大神也撕逼?看Juergen Schmidhuber论战LeCun、Bengio和Hinton

对于LeCun、Bengio和Hinton三位大神联合发表于 Nature 的综述文章“Deep Learning”,许多深度学习从业者评论认为写得既全面又深入浅出,读来非常过瘾。不过,另一尊大神Juergen Schmidhuber并不这么认为。后者今天发表评论文章“Critique of Pa...

2015-07-02 22:09:47

阅读数:259

评论数:0

浅谈深度学习技术及其应用

来自公众号“机器学习专家平台”的文章,从宏观角度讲解深度学习的工作原理,优势,以及主要的深度学习模型及其应用,包括深度神经网络(Deep Neural Network)、卷积神经网络(Convolutional Neural Network)、循环神经网络(Recurrent Neural Net...

2015-07-02 09:17:48

阅读数:76

评论数:0

Google Earth将深度学习和虚拟现实应用于卫星图像分析

当前的地图由传统计算技术产生,但WRI的CTO Aaron Steele表示,该组织正在构建一个系统,利用神经网络扩展、加速和增强这个过程。在Google和Facebook等公司,“深度学习”已经在识别每天上传的互联网图片中的人脸和物体,很多人认为这项技术可以显著加速卫星图像分析,并实现更好的...

2015-07-01 14:33:29

阅读数:61

评论数:0

提示
确定要删除当前文章?
取消 删除