自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

  • 博客(8)
  • 资源 (1)
  • 收藏
  • 关注

原创 里程碑:自动化标注在实际视频源的使用

终于实现了在实际视频源的使用自动化标注,并且跟踪人体,使得整个系统可以作为完整的跟踪反馈系统,虽然目前的精度低,鲁棒性差,可是毕竟一个完整的雏形形成了。算是这一个月来的一个里程碑了。在以前的基础上,这里获取人体背景轮廓是使用中位值平均法,算法很简单,只要三行代码,  for(;;){  double d_count = frame_count;    cvAddWeighted(backgroun

2005-07-27 17:07:00 1534

原创 自动化特征点标注的实现

根据简化的轮廓信息以后,很容易获得头部,手,脚的位置。此外利用手臂与身体交角部分,可以确定躯干的宽度,头部与腿部交角部分可以确定躯干长度,脖子位置站躯干比率0.75 ,腰位置为0.3肘部是肩膀与手的中线点,膝盖是腰部与脚的中线点。这样各个特征点大致位置可以定义出来。从实验结果来看大部分特征点是正确的,头部有些偏是因为简化的轮廓信息压缩损失了这个信息,同样手臂肘部的位置也是在压缩后丢失了。现在我的研

2005-07-25 11:34:00 1941 1

原创 简化的轮廓来获取骨架信息

这段时间对轮廓的分析与研究,主要目的是想提供一个准确的人体骨架模型来方便特征点的自动标注,第一步对于轮廓中U形端点的取得是很准确的,第二步我参考了孙怡的利用条形模型寻找条带的算法寻找四肢与躯干,但是效果很差,主要原因是在矢量化后的轮廓并不不是易于处理的结果,出现形态学操作后的干扰噪声。不得不考虑其他方向。第二个方向是看到直接从轮廓中提取骨架,这方面有论文,《Pose estimation of h

2005-07-21 14:15:00 1723

原创 从轮廓中取得四肢与头部的算法

从轮廓中取得四肢与头部的算法实现了取得四肢与头部的算法,即取得五个U形的端点.算法如下:int SegmentBody(CvSeq* contour){ float StandBodyLength = 10.0; float StandArc = 40; float lk,l1,l2=0; CvPoint pt1,pt2,pt0; double total_arc = 0; //内旋角度 doub

2005-07-18 16:58:00 2408 1

原创 从轮廓中分割人体的思路

参考了Maylor K. Leung and Yee-Hong Yang 的《First Sight A human body outline labeling system》,开始针对轮廓进行人体分割,第一步:寻求U形状的身体端点,从图中可以看出,一般情况下,会出现五个U形端点,分别是:头部,左手,右手,左脚,右脚, 算法是,  设定某一个参考长度L,大于L的矢量可以认为它是身体轮廓的一部分,小

2005-07-13 13:01:00 2180

原创 对于轮廓矢量化处理

这几天,研究对于差分的方法不是很容易分析,因为本身轮廓是不连续的,退而求其次,我只得求到完整的轮廓才可以有效的分析,这样不得不对静态的背景进行分析,于是我只有暂时提高了实验的要求,即人体运动的背景需要过虑,例如拉一块布做背景,而且最好不要有影子的干扰,我目前还没有这个实验条件,是因为我的摄像头是很一般的摄像头,不能调节相距,所以不能照到全身相,因此我还是暂时使用动画做视频来源了,在这个基础上,我使

2005-07-11 14:30:00 1515

原创 基于差分的方法的改进

看了不少的基于差分的方法,得到轮廓背景。绝大部分是,差分(与背景相减,或者与前一帧相减)=》中值滤波=》形态学膨胀=》腐蚀,但是这个运算太大,太复杂,速度太慢,大概每帧1.5s。我实验用了视频分辨率是650*700,然后我的笔记本配置是PIII 800,128M。这几天一直再苦恼这个方法,后来请教了一位网上的朋友,提示我可以使用低分辨率,缩小轮廓的方法减轻运算的复杂度,后来我采用了金字塔分割的方法

2005-07-06 16:46:00 1533

原创 差分法求取轮廓的进一步实验

今天实验了差分的方法,就是对运动画面的连续两帧相减再求绝对值,感觉闪烁感比较强(因为连续两帧几乎相同),而且轮廓不是很清晰,后来我采用了隔帧相减,和隔两帧相减,减小了闪烁感。以上的实验视频来源于文件,我是用了压缩后的avi文件,压缩格式为Cinepak(R) Codec 1.1,比较意外的是当我使用直接来自摄像头的视频源时,又没有明显的闪烁感了,这一点我不太明白,可能于视频的压缩算法有关,等待进一

2005-07-04 11:31:00 1517

spark_game_enignee.rar

spark game enignee 游戏引擎代码

2009-10-29

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除