Python 学习与编程资料大全中文版 Python学习与编程资源参考,内容包括:Web 框架、网络爬虫、网络内容提取、模板引擎、数据库、数据可视化、图片处理、文本处理、自然语言处理、机器学习、日志、代码分析等
github.com 资源访问限制的解决办法 本文介绍一种方法来解决这个问题,这个不是翻墙技术,而是通过查找最快的DNS解析路径,修改Windows hosts文件的办法加速对github.com的访问。4、在Windows\system32\drivers\etc\下,找到hosts文件并添加IP地址和对应域名,按照如下格式修改hosts文件(注意不能修改hosts文件的原始格式,否则不可用),如果下次不能使用,可重新查询替换IP即可。5、刷新dns,启动命令运行窗口,输入命令:ipconfig/flushdns 刷新DNS缓存。
利用Python+selenium实现CSDN登录及文章发布自动化 如果在外部利用专业的编辑工具首先写好文章(可以是多篇),包括:文章标题、文章内容、文章标签、文章封面、文章摘要、文章类型、可见范围;然后将这些内容全部生成在一个JSON文件中(如何将多项内容自动生成JSON文件,请参见我的上传资源),利用Python自动化,将这些文章自动发表在CSDN上,岂不是省事些?基于这个想法,本人编写了一段Python+selenium实现CSDN登录及文章发表自动化的示例片段供初学者参考,这段代码并没有完全实现文章发表自动化,但是可以参考已有代码进行修改,补充完成其余部分即可。
人工智能两个要素:机器学习算法+大数据 大数据是用于训练AI的,也就是AI算法通过大量的数据去学习AI中算法的参数与配置,使得AI的预测结果与实际的情况越吻合。用于AI的数据越多,AI的算法能力越强。比如要训练AI的识别手写数字的能力,必须要有很多写了数字的图片,同时每张图片上的数字是有准确标准答案的。这个要素应该是最重要的,没有算法的支持,AI是不可能发展到今天的,这个算法的突破主要是归根于深度学习相关的算法突破,这个算法是借鉴了人类的思考方式,通过多层次。通过对数据的分析和挖掘,人们可以发现新的见解、发现新的关系,并从中获得新的想法和创新。
英伟达Blackwell称霸MLPerf!推理性能涨30倍,新一代AI怪兽诞生 就在刚刚,MLCommons发布了基准测试套件MLPerf Inference v4.1的最新测试结果,此次发布涵盖了专家混合(MoE)模型架构的首次评测结果,展示了与推理功耗相关的新发现。为了实现高吞吐量、低延迟的性能,不仅需要强大的GPU,还需要高带宽的芯片互连技术、高效的加速库以及高度优化的推理引擎。大语言模型(LLM)推理是一个全栈挑战。