【JavaScript】麻麻再也不用担心我不会位运算了

博客围绕 JavaScript 位运算和十进制转二进制展开。介绍了十进制转二进制的方法及公式,还阐述了左移、右移、按位与、按位或、按位异或、按位非等位运算规则,并通过具体题解展示了位运算的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

昨天做了一道面试题,期间用到了左移、异或、运算符优先级,看到这道题,位运算渣渣的我一脸懵逼。遂决定攻克位运算,不再逃避。

题目

假设有如下代码,那么a(10)的返回结果是?
function a(a){
    a^=(1<<4)-1;
    return a;
}

十进制数转二进制

连续用该整数除以2取余数,然后用商再除以2,直到商等于0为止,最后把各个余数按相反的顺序排序。
在这里插入图片描述
十进制数值13转为二进制数值,步骤如下:

13除以2结果为6,余数为1。

6除以2结果为3,余数为0。

3除以2结果为1,余数为1。

1除以2结果为0,余数为1。

余数按相反的顺序排列,整数13的二进制数值结果为1101。

对于任何十进制正整数 n ,设其二进制为" b m b m − 1 . . . b 3 b 2 b 1 b_{m}b_{m-1}...b_{3}b_{2}b_{1} bmbm1...b3b2b1",则有:

十进制转二进制公式:n = 2 m − 1 b m + 2 m − 2 b m − 1 + . . . + 2 2 b 3 + 2 1 b 2 + 2 0 b 1 2^{m-1}b_{m}+2^{m-2}b_{m-1}+...+2^{2}b_{3}+2^{1}b_{2}+2^{0}b_{1} 2m1bm+2m2bm1+...+22b3+21b2+20b1

n = 13
= 110 1 b 1101_{b} 1101b
= 1 ∗ 2 3 + 1 ∗ 2 2 + 0 ∗ 2 1 + 1 ∗ 2 0 1*2^{3}+1*2^{2}+0*2^{1}+1*2^{0} 123+122+021+120
( b 4 2 3 + b 3 2 2 + b 2 2 1 + b 1 2 0 b_{4}2^{3}+b_{3}2^{2}+b_{2}2^{1}+b_{1}2^{0} b423+b322+b221+b120)
= 8 + 4 + 0 + 1
= 13

左移运算符(<<)规则

左移n位就相当于乘以2的n次方
1 << 4 等于 1 ∗ 2 4 1 * 2^{4} 124 等于 16

右移运算符(>>)规则

右移n位相当于除以2的n次方
10 >> 3 等于 10 2 3 \frac{10}{ 2^{3}} 2310 等于 1

按位与 &

对每对比特位执行与(AND)操作。只有 a 和 b 都为1时,a & b 就是 1,否则是0。

按位或 |

对每对比特位执行与(AND)操作。只有 a 和 b 任意一位为1时,a | b 就是 1,否则是0。

按位异或 ^

对于每一个比特位,当两个操作数相应的比特位有且只有一个1时,结果是1,否则是0。

按位非 ~

对每一个比特位执行非(NOT)操作。NOT a 结果为 a 的反转(即反码)。
按位非对数值取反并减1。
~25 等于 -25 - 1 等于 -26

题解

1<<4

1<<4 = 1 ∗ 2 4 1 * 2^{4} 124 = 16

(1<<4)-1

1<<4 = 1 ∗ 2 4 1 * 2^{4} 124 - 1 = 15

a^=(1<<4)-1

在这里插入图片描述
a = 10
a = 10^15
根据上述十进制数转二进制公式可知
10 的二进制是 1010
15 的二进制是 1111
则 10^15 = 5

总结

十进制转二进制公式如上综述。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值