1.顺序查找
- 简介
顺序查找适合于存储结构为顺序存储或链接存储的线性表。 - 基本思想
顺序查找也称为线形查找,属于无序查找算法。从数据结构线形表的一端开始,顺序扫描,依次将扫描到的结点关键字与给定值k相比较,若相等则表示查找成功;若扫描结束仍没有找到关键字等于k的结点,表示查找失败。 - 复杂度
查找成功时的平均查找长度为:(假设每个数据元素的概率相等) ASL = 1/n(1+2+3+…+n) = (n+1)/2 ;
当查找不成功时,需要n+1次比较,时间复杂度为O(n);
所以,顺序查找的时间复杂度为O(n)。
//顺序查找C语言实现
//基本思路:用顺序结构存储数据(数组、链表),从前到后依次查询目标值,
//如果发现则返回查找到的值,否则返回0.
#include<stdio.h>
int FindBySeq(int *ListSeq, int ListLength, int KeyData);
int main()
{
int TestData[5] = { 34, 35, 26, 89, 56 };
int retData = FindBySeq(TestData, 5, 89);
printf("retData: %d\n", retData);
return 0;
}
int FindBySeq(int *ListSeq, int ListLength, int KeyData)
{
int tmp = 0;
int length = ListLength;
for (int i = 0; i < ListLength; i++)
{
if (ListSeq[i] == KeyData)
return i;
}
return 0;
}
2.二分查找
- 简介
元素必须是有序的,如果是无序的则要先进行排序操作。
- 基本思想
也称为是折半查找,属于有序查找算法。用给定值k先与中间结点的关键字比较,中间结点把线形表分成两个子表,若相等则查找成功;若不相等,再根据k与该中间结点关键字的比较结果确定下一步查找哪个子表,这样递归进行,直到查找到或查找结束发现表中没有这样的结点。
- 复杂度分析
最坏情况下,关键词比较次数为log2(n+1),且期望时间复杂度为O(log2n);
注:折半查找的前提条件是需要有序表顺序存储,对于静态查找表,一次排序后不再变化,折半查找能得到不错的效率。但对于需要频繁执行插入或删除操作的数据集来说,维护有序的排序会带来不小的工作量,那就不建议使用。——《大话数据结构》
#include<stdio.h>
//二分查找-C语言实现
//基本思路:将排序好的数据存放到数组里(不能是链表)
// 这只前中后标签,与中间元素比,若小于就将后变为原来的中
// 继续计算中,比较,循环,直至等于中,或循环结束。
int binsearch(int *sortedSeq, int seqLength, int keyData);
int main()
{
int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
int location;
int target = 4;
location = binsearch(array, 9, target);
printf("%d\n", location);
return 0;
}
int binsearch(int *sortedSeq, int seqLength, int keyData)
{
int low = 0, mid, high = seqLength - 1;
while (low <= high)
{
mid = (low + high) / 2;//奇数,无论奇偶,有个值就行
if (keyData < sortedSeq[mid])
{
high = mid - 1;//是mid-1,因为mid已经比较过了
}
else if (keyData > sortedSeq[mid])
{
low = mid + 1;
}
else
{
return mid;
}
}
return -1;
}