BZOJ 2005-能量采集(莫比乌斯反演)

2005: [Noi2010]能量采集

Time Limit: 10 Sec  Memory Limit: 552 MB
Submit: 4134  Solved: 2467
[Submit][Status][Discuss]

Description

栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,
栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列
有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,
表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了
一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器
连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于
连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植
物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20
棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能
量损失。

Input

仅包含一行,为两个整数n和m。

Output

仅包含一个整数,表示总共产生的能量损失。

Sample Input

【样例输入1】
5 4
【样例输入2】
3 4

Sample Output

【样例输出1】
36
【样例输出2】
20
对于100%的数据:1 ≤ n, m ≤ 100,000。

HINT


一道莫比乌斯反演模板题,题目就是要求gcd(x,y)=d的倍数有多少对,对于点(x,y),可以的到k=gcd(x,y)-1的结论,然利用莫比乌斯函数的性质求一发对答案的贡献,这里仍采用分块优化的方法。

#include<map>     
#include<stack>            
#include<queue>            
#include<vector>    
#include<string>  
#include<math.h>            
#include<stdio.h>            
#include<iostream>            
#include<string.h>            
#include<stdlib.h>    
#include<algorithm>   
#include<functional>    
using namespace std;
typedef long long  ll;
#define inf  1000000000       
#define mod 1000000007             
#define maxn  560050  
#define lowbit(x) (x&-x)            
#define eps 1e-9  
ll a[maxn] = { 1,1 }, b[maxn], mu[maxn], cnt, sum[maxn];
void init()
{
	ll i, j;sum[1] = 1;
	for (i = 2;i<maxn;i++)
	{
		if (a[i] == 0)
			b[++cnt] = i, sum[i] = i - 1;
		for (j = 1;j <= cnt && i*b[j] < maxn;j++)
		{
			a[b[j] * i] = 1; 
			if (i%b[j] == 0)
			{
				sum[b[j] * i] = sum[i] * b[j];
				break;
			}
			else
				sum[i*b[j]] = sum[i] * (b[j] - 1);
		}
	}
	for (i = 1;i < maxn;i++)
		sum[i] += sum[i - 1];
}
int  main(void)
{
	init();
	ll i, x, k, n, m, j, last;
	while (scanf("%lld%lld",&n,&m)!=EOF)
	{
		ll ans = 0; 
		if (n > m)   swap(n, m);
		for (i = 1,last=0;i <= n;i=last+1)
		{
			last = min(n / (n / i), m / (m / i));
			ans += (sum[last] - sum[i - 1])*(n / i)*(m / i);
		}
		printf("%lld\n", ans * 2 - n*m);
	}
	return 0;
}


发布了961 篇原创文章 · 获赞 175 · 访问量 21万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 程序猿惹谁了 设计师: 上身试试

分享到微信朋友圈

×

扫一扫,手机浏览