深度学习pytorch基础入门教程(1小时)-神经网络

这篇博客介绍了如何使用PyTorch构建和训练一个简单的神经网络,包括定义网络结构、损失函数、反向传播和权重更新。通过一个60分钟的教程,解释了张量操作、自动梯度机制以及如何在神经网络中应用这些概念。此外,还讨论了nn.Module的forward方法、损失计算以及反向传播的过程,最后展示了如何更新网络权重并清除梯度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DEEP LEARNING WITH PYTORCH: A 60 MINUTE BLITZ

最近因为课题的需要,要利用pytorch实现pointer network,所以在这里对ytorch的基本语法做一个简答的教程,主要参考了《60分钟闪电战:使用pytorch进行深度学习》。

本教程的目标如下:

  • 理解pytorch的张量(Tensor)库和顶层神经网络;
  • 训练一个简单神经网络进行图像分类。
  1. 深度学习pytorch基础入门教程(1小时)-张量、操作、转换
  2. 深度学习pytorch基础入门教程(1小时)-自动梯度
  3. 深度学习pytorch基础入门教程(1小时)-神经网络

神经网络

神经网络可以使用torch.nn包来构建。

现在已经对autograd有了解了,nn就是通过autograd对模型进行定义和微分的。nn模块包含了层(layers)和一个forward(输入)方法用于返回输出(output)。

例如,看看这个数字图像分类网络:

在这里插入图片描述
这是一个简单的前馈网络,它接受输入,将其传送到多个层,最后给出输出。

典型的神经网络训练过程如下:

  • 定义具有一些可学习参数(或权值)的神经网络;
  • 在输入数据集上多次迭代;
  • 通过网络处理输入;
  • 计算损失(输出距离正确有多远);
  • 方向传播梯度到网络的参数;
  • 更新网络的权值,通常使用一个简单的更新规则:weight = weight - learning_rate * gradient。

定义网络

定义如下网络:

import torch
import torch.nn as nn
import torch.nn.functional as F


class Net(nn.Module):

    def __init__(self):
        super(Net, self).__init__()
        # 1 input image channel, 6 output channels, 3x3 square convolution
        # kernel
        self.conv1 = nn.Conv2d(1, 6, 3)
        self.conv2 = nn.Conv2d(6, 16, 3)
        # an affine operation: y = Wx + b
        self.fc1 = nn.Linear(16 * 6 * 6, 120)  # 6*6 from image dimension
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        # Max pooling over a (2, 2) window
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        # If the size is a square you can only specify a single number
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        x = x.view(-1, self.num_flat_features(x))
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

    def num_flat_features(self, x):
        size = x.size()[1:]  # all dimensions except the batch dimension
        num_features = 1
        for s in size:
            num_features *= s
        return num_features


net = Net()
print(net)

输出:

Net(
  (conv1): Conv2d(1, 6, kernel_size=(3, 3), stride=(1, 1))
  (conv2): Conv2d(6, 16, kernel_size=(3, 3), stride=(1, 1))
  (fc1): Linear(in_features=576, out_features=120, bias=True)
  (fc2): Linear(in_features=120, out_features=84, bias=True)
  (fc3): Linear(in_features=84, out_features=10, bias=True)
)

你只需要定义forward函数,并且通过autograd可以自动定义backward函数(在这里计算梯度)。在forward函数中可以使用任何张量运算。

模型中的可学习参数通过 nn.parameter返回:

params = list(net.parameters())
print(len(params))
print(params[0].size())  # conv1's .weight

输出:

10
torch.Size([6, 1, 3, 3])

下面尝试一个随机的32x32输入。注意:网络的期望输入大小为32x32,要在MINIST数据集上使用此网络,需要将数据集的图像大小调整为32x32。

input = torch.randn(1, 1, 32, 32)
out = net(input)
print(out)

输出:

tensor([[ 0.0225,  0.0284,  0.0803,  0.0649,  0.0772, -0.0396,  0.1045,  0.0433,
          0.0554, -0.0409]], grad_fn=<AddmmBackward>)

清除所有参数的梯度缓存,使用随机梯度进行反向传播:

说明:torch.nn仅支持mini-batches。整个torch.nn包仅支持mini-batch样本的输入,而不是单个样本。
例如,nn.Conv2d将输入一个4D张量nSamples x nChannels x Height x Width。
如果只有一个样本,只需要通过input.unsqueeze(0)来增加一个批次维度。

损失函数

损失函数将(输出,目标)对作为输入,用来计算估计输出距离目标多远的值。

在nn包下有多个不同的损失函数,一个简单的损失是nn.MSELoss,其计算了输出和目标之间的均方误差。

例如:

output = net(input)
target = torch.randn(10)  # a dummy target, for example
target = target.view(1, -1)  # make it the same shape as output
criterion = nn.MSELoss()

loss = criterion(output, target)
print(loss)

输出:

tensor(1.1812, grad_fn=<MseLossBackward>)

现在,如果你使用 .grad_fn属性,按照loss的反向方向,你会看到一个类似这样的计算图:

input -> conv2d -> relu -> maxpool2d -> conv2d -> relu -> maxpool2d
      -> view -> linear -> relu -> linear -> relu -> linear
      -> MSELoss
      -> loss

所以当调用loss.backward()是,整个图是关于损失进行微分的,图中所有requires_grad=True的张量都将随着梯度累积.grad张量。

为了说明这一点,让我们反向执行几步:

print(loss.grad_fn)  # MSELoss
print(loss.grad_fn.next_functions[0][0])  # Linear
print(loss.grad_fn.next_functions[0][0].next_functions[0][0])  # ReLU

输出:

<MseLossBackward object at 0x00000196495DEB08>
<AddmmBackward object at 0x0000019649C6ED48>
<AccumulateGrad object at 0x00000196495DEB08>

反向传播

为了反向传播误差,所要做的就是loss.backward()。但是首先需要清除现有的梯度,否则梯度会累积到现有的梯度中。

现在调用loss.backward(),看一下执行backward前后conv1的偏差梯度:

net.zero_grad()     # zeroes the gradient buffers of all parameters

print('conv1.bias.grad before backward')
print(net.conv1.bias.grad)

loss.backward()

print('conv1.bias.grad after backward')
print(net.conv1.bias.grad)

输出:

tensor([0., 0., 0., 0., 0., 0.])
conv1.bias.grad after backward
tensor([0.0051, 0.0014, 0.0124, 0.0196, 0.0045, 0.0071])

更新权重

实际中使用的最简单的更新规则是随机梯度下降(SGD)

weight = weight - learning_rate * gradient

可通过如下python代码实现:

learning_rate = 0.01
for f in net.parameters():
    f.data.sub_(f.grad.data * learning_rate)

然而当使用神经网络时,希望使用各种不同的更新规则,如SGD、Nesterov-SGD、 Adam、 RMSProp等。为了实现这个,构建了一个小型包:torch.optim,用于实现所有这些方法,使用起来很简单:

import torch.optim as optim

# create your optimizer
optimizer = optim.SGD(net.parameters(), lr=0.01)

# in your training loop:
optimizer.zero_grad()   # zero the gradient buffers
output = net(input)
loss = criterion(output, target)
loss.backward()
optimizer.step()    # Does the update

注意观察如何使用optimizer.zero_grad()手动将梯度设置为0。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

松间沙路hba

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值