追寻美的指引--纪念西蒙斯

周六早上醒来,James Simons(西蒙斯)辞世的消息刷屏了。多数人知道他,是因为他的财富和量化对冲基金公司-文艺复兴。但他更值得为人纪念的身份,则是数学家和慈善家。

西蒙斯1938年生于麻省,毕业于MIT,在UC Berkeley获得博士学位。曾任职于MIT, Harvard,后来在SBU(Stony Brook University,纽约州立大学石溪分校)担任了数学系主任。此后他跨行到了金融界,开创了传奇式的文艺复兴对冲基金。

西蒙斯作为数学家,最大的成就是他与陈省身共同提出的Chern-Simons Theory,这一理论在低维拓扑学、量子场理论和弦理论中有着广泛的应用。


下图就是据说是流体冲击情景下的Chern-Simons Form随曲面三维位置和极坐标位置变化的示意图(根据鹿鹿数模@知乎提供的代码绘制),因为觉得很美,根据西蒙斯的“指导原则”:“be guided by beauty”,就把这个图贴上来。


在这里插入图片描述

西蒙斯很早就有做生意的兴趣。在26岁时,因为背上债务,不得不委身于军方,帮助他们破译密码。这项工作对他来说十分轻松,但报酬却很高。不过,由于他毫不避讳地坚持反战,这与他上司的上司的立场截然相反,最终被解雇。

随后他进入石溪分校,担任了数学系主任。这项工作中,最重要的任务可能就是挖角。可能是因为之前一直有做生意的历练,他在这一任务中如鱼得水,囊括了大量人才,一度导致同州的康纳尔大学向州长抗议。最终,经他的努力,石溪分校数学系终于从一文不名发展到有20多位数学家、成为世界顶尖的几何学研究中心之一。这也为他后来成功创办文艺复兴打下了人才基础。

不过,伯乐也有相不中马的时候。他在石溪最大的损失,就是没能发掘出当时还在担任助教的丘成桐,也就是最近因为在华中科技大学的一个演讲,受到项立刚等等“专家”攻击的数学巨搫。不过,西蒙斯一直跟华人科学家很有缘分。下图是他与杨振宁、陈省身的合影:


75%

虽然在平凡之辈看来,西蒙斯是天纵英才,但也有他解决不了的难题。在试图证明某些有几何定义的数字(比如 p i pi pi,几乎在任何情况下都是无理数这一猜想时,遇到了挫折,让他变得灰心丧气甚至有点绝望,并最终将他推向了金融界。

1978年,西蒙斯成立投资公司并专职做交易。

对于他的离职,不同的人有不同的看法。他的父亲说他放弃终身教职是犯了一个错误,他更愿意别人问起儿子的工作时,能够回答说是“数学家”而不是“企业家”。大部分数学家认为以追求金钱为目的是不光彩的。他的同事沙利文认为,数学是神圣的,吉姆是认真的数学家,是可以解决最棘手问题的人。而康纳尔大学的卡莫纳则批评得更为尖锐,认为他是“把灵魂卖给了魔鬼”。


有这样一群“清高”的人作为土壤,这也许是他们基础学科得以发展的重要原因之一吧。

不过,对西蒙斯来说,亦师亦友的陈省身对他离职的看法,则更耐人寻味。陈省身说,你又不是希尔伯特式的人物,转就转呗,反正数学界也不会损失什么。

西蒙斯转型做投资也并非一翻风顺。直到1989年,他们的交易策略仍然是主观和量化相结合的。他回忆到,有时候你像个英雄一样赚钱,有时候又像个狗熊一样的赔了。后来,他们决定完全转向量化,并且放弃一切宏观指标。由此开始,文艺复兴,特别是旗下的大奖章基金,开始了自己的狂飙时代。

从1988年到2019年,西蒙斯的大奖章基金年化收益率为39%(费前收益率则是66%!)。与之对比,巴菲特1965年—2018年的年均净值增长率为21%、索罗斯旗下量子基金从1969年—2000年的年均收益是32%。


西蒙斯也在2019年,成为财富榜上排名第21位的人。

很多人很好奇大奖章为何如此厉害,它的成功密诀究竟是什么?这也许是个永远的迷,不过,我们也有一些解读这个秘诀的一些线索。

一是美国证券交易委员会(SEC)1988年批准了电子交易,这是实现高频交易的技术基础。

二是从西蒙斯挖人来看,他招了不少之前在IBM via voice项目组做语音识别的人,语音识别与股价涨跌一样,同样是一维的时间序列。因此,预测一维时间序列的波动(即趋势和反转)应该是有意义的。只不过,随着技术的发展,我们应该、也可以使用新的技术(比如神经网络)来预测一维时间序列的波动。

第三个线索则比较有意思。在国内如果我们要挖掘一家公司的秘密,有时候会去裁判文书网搜索。西蒙斯的公司也曾卷入过诉讼。在一起诉讼中,一些商业秘密不得不被批露。两名文艺复兴的前员工表示,文艺复兴公司开发了涉及互换交易的一种策略。他们在法庭文件中将其描述为“大规模骗局”,违反了SEC管理卖空的规定。彭博社曾对此作过报道,现在这篇报道还可以在这里读到。

这里我们不评价文艺复兴的做法是否真正违法。无论如何,规则有漏洞,那是规则的问题。在交易中,找到这些规则的、技术上的“漏洞”(或者交易机会),是高胜率策略的关键之一。


文艺复兴的另一个成功秘诀,可能是所谓的壁虎式交易法则:即交易要像壁虎一样,平时趴在墙上一动不动,蚊子一旦出现就迅速将其吃掉,然后恢复平静,等待下一个机会。不过,如何理解这个法则,不同的人可能会有不同的解读了。

真正指引文艺复兴成功的因素,其实西蒙斯自己介绍过。秘诀就是围绕一些非常优秀的科学家来构建公司,这些科学家是经过相应考核的,公司独特的激励机制,也使得他们能一直跟公司在一起。这个激励机制的核心就是大奖章基金,它只对公司员工开放,而且每个人的薪资主要与整体的表现、而不是个人的表现相关。

如何复制这样一个团队,这可能不仅仅是令国内的机构感到困难的地方,甚至在全球都是这样。这才是文艺复兴真正的护城河,而这种领导力,西蒙斯从在石溪担任数学系主任时就开始构建了。

“不管我在做什么,我总觉得自己像个局外人,”西蒙斯说,“我全神贯注于数学,但我从来没有觉得自己是数学系的一员。我总是有一只脚在那个世界的外面。”

然而,当西蒙斯转身到投资界后,事情刚好反过来,他的一只脚,又踏回了数学界。

1996年,他的儿子保罗车祸遇难。2003年,小儿子尼古拉斯溺水身亡。西蒙斯选择以自己的方式逃避痛苦,开始潜心琢磨那些流传已久悬而未决的数学谜题。“那是避风港,是我心中一个安静的角落”。


2007年,他与苏利文发表了《微分形式普通上同调的公理特征》这篇论文,又杀回了数学界。

文艺复兴和高频量化赚了很多钱。西蒙斯也常常会被问起,高频交易究竟有何意义?每次西蒙斯都会回答,高频交易提供了流动性,使得价格发现更加有效,并且降低了做市商利润,从而使得总体交易成本下降。很难说西蒙斯自己对这个回答有多满意。

可以说,西蒙斯前半生是在追逐利润,后半生则是在追寻人生的意义。带着对人生意义的追寻,西蒙斯开启了慈善家的生涯。


西蒙斯于2004年创立了Math for America协会,旨在促进纽约市中学数学教师的招募。这可能跟他第一次放弃教职,转投军方项目有关。

他解释说,我们通常认为,我们的老师懂数学。你会说当然了。但是很让人吃惊的是,尤其是当你上了中学的时候,你会发现大部分的数学老师数学懂得却不多。其中一种回答就是如果他们真的懂这门学科,那他们可以带着同样多的知识去 Google,Goldman Sachs或者什么其他地方。所以我们必须使这个职位变得更加吸引人,这也就是说给他们发更高的工资,这也正是我们在纽约和几个其他城市通过我们的项目正在做的,给老师们更多的尊重,并提供更多的支持。

西蒙斯还大量捐赠以支持对基础科学的研究,捐赠超过了10亿美元。他提到,如果单从对基础科学的投资规模上讲,应该还没有一个基金的规模能够与我们相比。

2010年,他签署了一项协议,将把他所有的财富,捐给慈善事业。

西蒙斯对中国也有捐赠。清华捐有一栋专家公寓楼,就是他捐赠的,以“陈赛蒙斯”命名。


在西蒙斯逝去时,我想,他更希望被人作为数学家和慈善家被纪念,而不是企业家。这也是他父亲对他的期望。他做到了。

财富扩大了西蒙斯的影响力,数学和慈善则延长了他的生命。

这是西蒙斯在AMS演讲上给出的人生指南:

  • Do something original
  • Be guided by beauty
  • Don’t give up easily
  • Hope for good luck.

在这里插入图片描述

数据集介绍:神经元细胞核检测数据集 一、基础信息 数据集名称:神经元细胞核检测数据集 图片数量: - 训练集:16,353张 - 测试集:963张 分类类别: - Neuron(神经元细胞核):中枢神经系统的基本功能单位,检测其形态特征对神经科学研究具有重要意义。 标注格式: - YOLO格式,包含边界框坐标及类别标签,适用于目标检测任务 - 数据来源于显微镜成像,覆盖多种细胞分布形态和成像条件 二、适用场景 神经科学研究: 支持构建神经元定位分析工具,助力脑科学研究和神经系统疾病机理探索 医学影像分析: 适用于开发自动化细胞核检测系统,辅助病理诊断和细胞计数任务 AI辅助诊断工具开发: 可用于训练检测神经元退行性病变的模型,支持阿尔茨海默症等神经疾病的早期筛查 生物教育及研究: 提供标准化的神经元检测数据,适用于高校生物学实验室和科研机构的教学实验 三、数据集优势 大规模训练样本: 包含超1.6万张训练图像,充分覆盖细胞核的多样分布状态,支持模型深度学习 精准定位标注: 所有标注框均严格贴合细胞核边缘,确保目标检测模型的训练精度 任务适配性强: 原生YOLO格式可直接应用于主流检测框架(YOLOv5/v7/v8等),支持快速模型迭代 生物学特性突出: 专注神经元细胞核的形态特征,包含密集分布、重叠细胞等真实生物场景样本 跨领域应用潜力: 检测结果可延伸应用于细胞计数、病理分析、药物研发等多个生物医学领域
数据集介绍:多环境动物及人类活动目标检测数据集 一、基础信息 数据集名称:多环境动物及人类活动目标检测数据集 图片数量: - 训练集:12,599张图片 - 验证集:1,214张图片 - 测试集:607张图片 总计:14,420张图片 分类类别: - bear(熊): 森林生态系统的顶级掠食者 - bird(鸟类): 涵盖多种飞行及陆栖鸟类 - cougar(美洲狮): 山地生态关键物种 - person(人类): 自然环境与人类活动交互场景 - truck(卡车): 工业及运输场景的车辆目标 - ungulate(有蹄类动物): 包括鹿、羊等草食性哺乳动物 - wolf(狼): 群体性捕食动物代表 标注格式: YOLO格式标注,包含归一化坐标的边界框及类别标签,可直接适配YOLOv5/v7/v8等主流检测框架。 数据特性: 涵盖航拍、地面监控等多视角数据,包含昼夜不同光照条件及复杂背景场景。 二、适用场景 野生动物保护监测: 支持构建自动识别森林/草原生态系统中濒危物种的监测系统,用于种群数量统计和栖息地研究。 农业与畜牧业管理: 检测农场周边的捕食动物(如狼、美洲狮),及时预警牲畜安全风险。 智能交通系统: 识别道路周边野生动物与运输车辆,为自动驾驶系统提供碰撞预警数据支持。 生态研究数据库: 提供7类典型生物与人类活动目标的标注数据,支撑生物多样性分析与人类活动影响研究。 安防监控增强: 适用于自然保护区监控系统,同时检测可疑人员(person)与车辆(truck)的非法闯入。 三、数据集优势 多场景覆盖: 包含森林、公路、山地等多类型场景,覆盖从独居动物(cougar)到群体生物(wolf)的检测需求。 类别平衡设计: 7个类别经专业数据采样,避免长尾分布问题,包含: - 3类哺乳动物捕食者(bear/cougar/wolf) - 2类环境指示物种(bird/ung
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

量化风云

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值