DBA应该知道的一些SQL Server跟踪标记

跟踪标记是什么?

    对于DBA来说,掌握Trace Flag是一个成为SQL Server高手的必要条件之一,在大多数情况下,Trace Flag只是一个剑走偏锋的奇招,不必要,但在很多情况下,会使用这些标记可以让你更好的控制SQL Server的行为。

下面是官方对于Trace Flag的标记:

    跟踪标记是一个标记,用于启用或禁用SQL Server的某些行为。

 

    由上面的定义不难看出,Trace Flag是一种用来控制SQL Server的行为的方式。很多DBATrace Flag都存在一些误区,认为只有在测试和开发环境中才有可能用到Trace Flag,这种想法只能说部分正确,因此对于Trace Flag可以分为两类,适合在生产环境中使用的和不适合在生产环境中使用的。

 

    Important:Trace Flag属于剑走偏锋的招数,在使用Trace Flag做优化之前,先Apply基本的Best Practice

 

如何控制跟踪标记

    控制跟踪标记的方式有以下三种:

1.通过DBCC命令

    可以通过DBCC命令来启用或关闭跟踪标记,这种方式的好处是简单易用,分别使用下面三个命令来启用,禁用已经查看跟踪标记的状态:

DBCC TRACEON(2203,-1)

DBCC TRACEOFF(2203,1)

DBCC TRACESTATUS

 

其中,TRACEONTRACEOFF第二个参数代表启用标志的范围,1Session Scope,-1Global Scope,如果不指定该值,则保持默认值Session Scope

另外,值得说的是,如果你希望在每次SQL Server服务启动时通过DBCC命令控制某些Flag,则使用

EXEC sp_procoption @ProcName = '<procedure name>' 

    , @OptionName = ] 'startup' 

    , @OptionValue = 'on';

这个存储过程来指定,sp_procoption存储过程会在SQL Server服务器启动时自动执行。

       还有一点值得注意的是,不是所有的跟踪标记都可以用DBCC命令启动,比如Flag 835就只能通过启动参数指定。

 

2.通过在SQL Server配置管理器中指定

这种方式是通过在数据库引擎启动项里加启动参数设置,只有Global Scope。格式为-T#跟踪标记1;T跟踪标记2;T跟踪标记3

 

3.通过注册表启动

     这种方式和方法2大同小异,就不多说了。

 

一些在生产环境中可能需要的跟踪标记

 

Trace Flag 610

减少日志产生量。如果你对于日志用了很多基础的best practice,比如说只有一个日志文件、VLF数量适当、单独存储,如果还是不能缓解日志过大的话,考虑使用该跟踪标记。

参考资料:

http://msdn.microsoft.com/en-us/library/dd425070.aspx

http://blogs.msdn.com/b/sqlserverstorageengine/archive/2008/10/24/new-update-on-minimal-logging-for-sql-server-2008.aspx 

 

Trace Flag  834

使用 Microsoft Windows 大页面缓冲池分配。如果服务器是SQL Server专用服务器的话,值得开启该跟踪标记。

 

Trace Flag  835

允许SQL Server 20052008标准版使用"锁定内存页",和在组策略中设置的结果大同小异,但是允许在标准版中使用.

 

Trace Flag  1118

tempdb分配整个区,而不是混合区,减少SGAM页争抢。

apply tempdbbest practice之后,还遇到争抢问题,考虑使用该跟踪标记。

参考资料:

http://blogs.msdn.com/b/psssql/archive/2008/12/17/sql-server-2005-and-2008-trace-flag-1118-t1118-usage.aspx 

Trace Flag  12041222

这两个跟踪标记都是将死锁写到错误日志中,不过1204是以文本格式进行,而1222是以XML格式保存。可以通过

sp_readerrorlog查看日志。

 

 

 

 

Trace Flag  12111224

两种方式都是禁用锁升级。但行为有所差别1211是无论何时都不会锁升级,而1224在内存压力大的时候会启用锁升级,从而避免了out-of-locks错误。当两个跟踪标记都启用是,1211的优先级更高。

 

Trace Flag  2528

禁用并行执行DBCC CHECKDB, DBCC CHECKFILEGROUP,DBCC CHECKTABLE。这意味着这几个命令只能单线程执行,这可能会需要更多的时间,但是在某些特定情况下还是有些用处。

 

Trace Flag  3226   

防止日志记录成功的备份。如果日志备份过于频繁的话,会产生大量错误日志,启用该跟踪标记可以使得日志备份不再被记录到错误日志。

 

Trace Flag  4199

所有KB补丁对于查询分析器行为的修改都生效,这个命令比较危险,可能扫称性能的下降,具体请参看:

http://support.microsoft.com/kb/974006

 

 

不应该在生产环境中启用的跟踪标记

 

Trace Flag  806 

 

在读取过程中对页检查逻辑一致性,在错误日志中就可以看到类似下面的信息:

 

2004-06-25 11:29:04.11 spid51 错误: 823,严重性: 24 日状态: 2
2004-06-25 11:29:04.11 spid51 I/O 错误 (审核失败) 在读取过程中检测到的偏移量主题 SQL Server\MSSQL\data\pubs.mdf e:\Program 文件中的 0x000000000b0000.

 

参考资料:http://support.microsoft.com/kb/841776

 

该跟踪标记会极大的降低性能!!!

 

Trace Flag 818  

 

检查写一致性

踪标志 818 启用了一个内存中的环形缓冲区,用于跟踪由运行 SQL Server 的计算机执行的最后 2,048 个成功写操作(不包括排序和工作文件 I/O)。发生 605823 或 3448 之类的错误时,将传入缓冲区的日志序列号 (LSN) 值与最新写入列表进行比较。如果在读操作期间检索到的 LSN 比在写操作期间指定的更旧,就会在 SQL Server 错误日志中记录一条新的错误信息。大部分 SQL Server 写操作以检查点或惰性写入形式出现。惰性写入是一项使用异步 I/O 操作的后台任务。环形缓冲区的实现是轻量的,因此对系统性能的影响可以忽略。

 

参考资料:http://support.microsoft.com/kb/826433

 

Trace Flag 1200 

 

返回加锁信息的整个过程,是学习加锁过程很牛逼的标志,示例代码如下:

 

DBCC TRACEON(1200,-1)

DBCC TRACEON(3604)

DBCC TRACESTATUS

 

SELECT * FROM AdventureWorks.person.Address

 

参考资料:

http://stackoverflow.com/questions/7449061/nolock-on-a-temp-table-in-sql-server-2008

 

Trace Flag 1806

 

禁用即时文件初始化,所有的磁盘空间请求全部使用填0初始化,可能造成在空间增长时产生阻塞。

 

Trace Flag 3502

在日志中显示有关checkpoint的相关信息。如图1所示。

图1.在错误日志中显示Checkpoint


Trace Flag 3505

不允许自动进行checkpoint,checkpoint只能手动进行,是非常危险的一个命令。

 

 

小结

跟踪标志是控制SQL Server行为的一种方式,对于某些跟踪标志来说,可以在生产环境中提高性能,而对于另一些来说,用在生产环境中是一件非常危险的事情,只有在测试环境中才能被使用。要记住,跟踪标记对于调优是一种剑走偏锋的手段,只有在使用了所有基本的调优手段之后,才考虑使用跟踪


原文出处:http://www.cnblogs.com/CareySon/archive/2013/04/23/3039284.html

AI实战-泰坦尼克号生还可能性数据集分析预测实例(含19个源代码+59.76 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:19个代码,共121.84 KB;数据大小:1个文件共59.76 KB。 使用到的模块: pandas numpy seaborn matplotlib.pyplot warnings sklearn.model_selection.train_test_split sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.confusion_matrix os scipy.stats sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OneHotEncoder sklearn.impute.KNNImputer sklearn.preprocessing.StandardScaler sklearn.ensemble.RandomForestRegressor sklearn.ensemble.GradientBoostingRegressor sklearn.metrics.classification_report sklearn.metrics.roc_auc_score sklearn.model_selection.cross_val_score sklearn.pipeline.Pipeline sklearn.model_selection.RandomizedSearchCV sklearn.ensemble.GradientBoostingClassifier sklearn.linear_model.LogisticRegression sklearn.naive_bayes.GaussianNB sklearn.metrics.roc_curve xgboost.XGBClassifier sklearn.ensemble.AdaBoostClassifier sklearn.tree.DecisionTreeClassifier sklearn.preprocessing.LabelEncoder imblearn.over_sampling.SMOTE sklearn.svm.SVC sklearn.model_selection.GridSearchCV math sklearn.neighbors.KNeighborsClassifier sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score sklearn.metrics.ConfusionMatrixDisplay torch dataclasses.dataclass typing.List typing.Tuple typing.FrozenSet typing.Set typing.Dict fcapy.lattice.ConceptLattice fcapy.lattice.formal_concept.FormalConcept fcapy.poset.POSet fcapy.visualizer.line_layouts.calc_levels sparselinear.SparseLinear sklearn.neural_network.MLPClassifier fcapy.context.FormalContext fcapy.visualizer.LineVizNx networkx sklearn.preprocessing.MinMaxScaler sklearn.ensemble.BaggingClassifier torch.nn torch.optim sklearn.datasets.load_iris
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值