一种新的非对称加密算法

概述

        这种算法是我研究的一种新的基于高维混沌系统的非对称加密算法。是否安全,具有抗量子性,暴力破解的情况下,如果按代码中的混沌系统参数来说,密钥空间为2^8448。假设调用全球算力,也要10^100世纪以上(这些数据你们可以去证实)

开源,C++语言

#include <iostream>
#include <vector>
#include <cmath>
#include <random>
#include <chrono>
#include <stdexcept>
#include <bitset>

using namespace std;
using namespace std::chrono;

// 混沌系统参数
const int CHAOS_DIM = 33;       // 混沌系统维度
const int ITERATIONS = 128;    // 迭代轮数
const double SYSTEM_PARAM = 114.514;  // 混沌参数

// 格密码参数
const int LATTICE_DIM = 256;   // 格维度
const int MODULUS_BITS = 2048; // 模数位数

// 混沌系统类
class HyperbolicChaosSystem {
private:
    vector<double> state;
    mt19937_64 rng;
    
    // 双曲混沌函数
    double hyperbolic_map(double x, double a) {
        double t = exp(-a * pow(sinh(x), 2));
        return (1 - t) / (1 + t);
    }

public:
    HyperbolicChaosSystem(size_t dim) : state(dim) {
        random_device rd;
        rng.seed(rd());
        uniform_real_distribution<double> dist(-1.0, 1.0);
        
        for (auto& s : state) {
            s = dist(rng);
        }
    }

    // 混沌系统迭代
    void iterate() {
        vector<double> new_state(CHAOS_DIM);
        for (int i = 0; i < CHAOS_DIM; ++i) {
            double sum = 0.0;
            for (int j = 0; j < CHAOS_DIM; ++j) {
                if (i != j) {
                    sum += hyperbolic_map(state[j], SYSTEM_PARAM);
                }
            }
            new_state[i] = hyperbolic_map(sum, SYSTEM_PARAM);
        }
        state = move(new_state);
    }

    // 生成随机位
    bool generate_bit() {
        iterate();
        double sum = 0.0;
        for (double s : state) {
            sum += s;
        }
        return fmod(abs(sum), 1.0) > 0.5;
    }

    // 生成随机大整数
    vector<bool> generate_bigint(size_t bits) {
        vector<bool> result;
        for (size_t i = 0; i < bits; ++i) {
            result.push_back(generate_bit());
        }
        return result;
    }
};

// 大整数运算工具
class BigInt {
private:
    vector<bool> bits;
    
    // 移除前导零
    void remove_leading_zeros() {
        while (!bits.empty() && !bits.back()) {
            bits.pop_back();
        }
        if (bits.empty()) bits.push_back(false);
    }

public:
    BigInt() {}
    
    BigInt(size_t size, bool value) : bits(size, value) {}
    
    BigInt(const vector<bool>& b) : bits(b) {
        remove_leading_zeros();
    }
    
    size_t size() const { return bits.size(); }
    
    bool operator[](size_t idx) const {
        return bits[idx];
    }
    
    // 加法
    BigInt operator+(const BigInt& other) const {
        size_t max_size = max(size(), other.size());
        vector<bool> result;
        bool carry = false;
        
        for (size_t i = 0; i < max_size; ++i) {
            bool a = (i < size()) ? bits[i] : false;
            bool b = (i < other.size()) ? other[i] : false;
            
            bool sum = a ^ b ^ carry;
            carry = (a && b) || (a && carry) || (b && carry);
            
            result.push_back(sum);
        }
        
        if (carry) result.push_back(true);
        
        return BigInt(result);
    }
    
    // 乘法
    BigInt operator*(const BigInt& other) const {
        BigInt result(size() + other.size(), false);
        
        for (size_t i = 0; i < size(); ++i) {
            if (bits[i]) {
                vector<bool> temp(i, false);
                temp.insert(temp.end(), other.bits.begin(), other.bits.end());
                result = result + BigInt(temp);
            }
        }
        
        return result;
    }
    
    // 模运算
    BigInt operator%(const BigInt& mod) const {
        if (mod.bits.empty() || !mod.bits.back()) {
            throw invalid_argument("Modulus cannot be zero");
        }
        
        BigInt remainder = *this;
        BigInt divisor = mod;
        
        if (divisor.size() > size()) {
            return remainder;
        }
        
        // 对齐除数
        size_t shift = size() - divisor.size();
        divisor = BigInt(vector<bool>(shift, false)).operator+(divisor);
        
        for (int i = shift; i >= 0; --i) {
            if (remainder.size() >= divisor.size()) {
                remainder = remainder + divisor;
            }
            divisor = divisor.shift_right(1);
        }
        
        return remainder;
    }
    
    // 右移
    BigInt shift_right(size_t n) const {
        if (n >= size()) return BigInt();
        return BigInt(vector<bool>(bits.begin() + n, bits.end()));
    }
    
    // 转换为字节向量
    vector<uint8_t> to_bytes() const {
        vector<uint8_t> bytes;
        size_t byte_count = (size() + 7) / 8;
        bytes.resize(byte_count, 0);
        
        for (size_t i = 0; i < size(); ++i) {
            if (bits[i]) {
                size_t byte_idx = i / 8;
                size_t bit_idx = i % 8;
                bytes[byte_idx] |= (1 << bit_idx);
            }
        }
        
        return bytes;
    }
    
    // 从字节创建
    static BigInt from_bytes(const vector<uint8_t>& bytes) {
        vector<bool> bits;
        for (uint8_t b : bytes) {
            for (int i = 0; i < 8; ++i) {
                bits.push_back(b & (1 << i));
            }
        }
        return BigInt(bits);
    }
};

// 密钥对结构
struct KeyPair {
    BigInt publicKey;
    BigInt privateKey;
};

// 加密系统核心
class QuantumResistCrypto {
private:
    // 混沌格生成器
    pair<BigInt, BigInt> generate_chaotic_lattice() {
        HyperbolicChaosSystem chaos(CHAOS_DIM);
        BigInt lattice_base(LATTICE_DIM * 2, false);
        BigInt error_vector(LATTICE_DIM, false);
        
        vector<bool> base_bits = chaos.generate_bigint(MODULUS_BITS);
        vector<bool> error_bits = chaos.generate_bigint(LATTICE_DIM);
        
        return {BigInt(base_bits), BigInt(error_bits)};
    }

public:
    // 密钥生成
    KeyPair generate_keys() {
        auto start = high_resolution_clock::now();
        
        auto [lattice, error] = generate_chaotic_lattice();
        HyperbolicChaosSystem chaos(CHAOS_DIM);
        
        // 生成私钥(多维混沌向量)
        BigInt privateKey = BigInt(chaos.generate_bigint(MODULUS_BITS));
        
        // 生成公钥(格困难问题)
        BigInt publicKey = (lattice * privateKey) + error;
        
        auto end = high_resolution_clock::now();
        auto duration = duration_cast<milliseconds>(end - start);
        cout << "密钥生成时间: " << duration.count() << " ms\n";
        
        return {publicKey, privateKey};
    }

    // 加密
    vector<BigInt> encrypt(const BigInt& publicKey, const vector<uint8_t>& message) {
        auto start = high_resolution_clock::now();
        
        HyperbolicChaosSystem chaos(CHAOS_DIM);
        vector<BigInt> ciphertext;
        
        // 消息转换为大整数
        BigInt msg_int = BigInt::from_bytes(message);
        
        // 生成随机掩码
        BigInt r = BigInt(chaos.generate_bigint(MODULUS_BITS));
        
        // 格基加密
        BigInt c1 = (publicKey * r) % BigInt(vector<bool>(MODULUS_BITS, true));
        BigInt c2 = (msg_int + r) % BigInt(vector<bool>(MODULUS_BITS, true));
        
        ciphertext.push_back(c1);
        ciphertext.push_back(c2);
        
        auto end = high_resolution_clock::now();
        auto duration = duration_cast<milliseconds>(end - start);
        cout << "加密时间: " << duration.count() << " ms\n";
        
        return ciphertext;
    }

    // 解密
    vector<uint8_t> decrypt(const BigInt& privateKey, const vector<BigInt>& ciphertext) {
        auto start = high_resolution_clock::now();
        
        if (ciphertext.size() != 2) {
            throw invalid_argument("无效的密文");
        }
        
        BigInt c1 = ciphertext[0];
        BigInt c2 = ciphertext[1];
        
        // 格基解密
        BigInt r_prime = (c1 * privateKey) % BigInt(vector<bool>(MODULUS_BITS, true));
        BigInt msg_int = (c2 + r_prime) % BigInt(vector<bool>(MODULUS_BITS, true));
        
        auto bytes = msg_int.to_bytes();
        
        // 移除填充
        while (!bytes.empty() && bytes.back() == 0) {
            bytes.pop_back();
        }
        
        auto end = high_resolution_clock::now();
        auto duration = duration_cast<milliseconds>(end - start);
        cout << "解密时间: " << duration.count() << " ms\n";
        
        return bytes;
    }
};

int main() {
    try {
        QuantumResistCrypto crypto;
        
        // 生成密钥对
        KeyPair keys = crypto.generate_keys();
        
        // 测试消息
        string message = "抗量子加密算法测试@2025! 安全等级: ∞";
        vector<uint8_t> plaintext(message.begin(), message.end());
        plaintext.resize(1024); // 填充到1KB
        
        // 加密
        auto ciphertext = crypto.encrypt(keys.publicKey, plaintext);
        
        // 解密
        auto decrypted = crypto.decrypt(keys.privateKey, ciphertext);
        
        // 验证解密结果
        string decrypted_str(decrypted.begin(), decrypted.end());
        
        cout << "解密结果: " << decrypted_str.substr(0, 40) << "..." << endl;
        
        // 安全性分析
        double security_level = pow(2, LATTICE_DIM * CHAOS_DIM);
        double global_hashrate = 1e20; // 全球算力(每秒哈希次数)
        double seconds_in_century = 3.15576e9;
        double centuries = security_level / (global_hashrate * seconds_in_century * 1e100);
        
        cout << "\n安全参数分析:\n";
        cout << "密钥空间: 2^" << (LATTICE_DIM * CHAOS_DIM) << endl;
        cout << "暴力破解所需世纪数: " << scientific << centuries << endl;
        cout << "抗量子安全等级: 抵抗已知量子算法攻击" << endl;
        
    } catch (const exception& e) {
        cerr << "错误: " << e.what() << endl;
        return 1;
    }
    
    return 0;
}

总结

        混沌系统参数可以随便改,都不会对解密结果有影响,(只要你的电脑性能足够好,我在33维的情况下手机用了900毫秒才完事,再高你的电脑可能会爆炸),理论上来说,那些参数越大,安全程度越高。

传统艺能

        求关注和点赞。第一次搞算法,挺激动的

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值