贝叶斯核函数回归介绍
Bayesian Kernel Machine Regression - BKMR
前言
BKMR是哈佛大学J.F. Bobb等2015年在Biostatistics上发表的方法,该团队后续在2018年发布BKMR包(R)可被调用处理应用问题。BKMR所涉及的数学知识主要包括以下三部分:
- 回归分析(第一层:无法处理多变量的共线性问题,所以需要引入其他方法)
- 核函数(第二层:通过kernel function将特征/自变量向量的空间升维,提供了变量选择的可能)
- 变量选择/贝叶斯统计-先验选择及MCMC(第三步:完成variable selection和效应的估计)
本系列文章也将依次介绍以上三方面的数理统计知识,最后用BKMR包提供的实际例子展示该模型的应用。
一、回归分析在估计多变量效应时的痛点
waiting for input
二、统计机器学习中的Kernel function (从RKHS到SVM)
waiting for input
三、贝叶斯统计与MCMC
waiting for input
四、BKMR方法总结
waiting for input
五、R package-BKMR的应用
waiting for input
总结
帮助读者了解BKMR并不是本文写作的目的,我认为更有意义的应该是了解该方法产生的思路,即由经典的方法出发,在遭遇相应问题时寻找是否存在解决问题的方法,逐步收束问题,最终提出解决方案(当然,很多情况下会以失败告终)。