贝叶斯核函数回归

贝叶斯核函数回归介绍



前言

BKMR是哈佛大学J.F. Bobb等2015年在Biostatistics上发表的方法,该团队后续在2018年发布BKMR包(R)可被调用处理应用问题。BKMR所涉及的数学知识主要包括以下三部分:

  1. 回归分析(第一层:无法处理多变量的共线性问题,所以需要引入其他方法)
  2. 核函数(第二层:通过kernel function将特征/自变量向量的空间升维,提供了变量选择的可能)
  3. 变量选择/贝叶斯统计-先验选择及MCMC(第三步:完成variable selection和效应的估计)

本系列文章也将依次介绍以上三方面的数理统计知识,最后用BKMR包提供的实际例子展示该模型的应用。


一、回归分析在估计多变量效应时的痛点

waiting for input

二、统计机器学习中的Kernel function (从RKHS到SVM)

waiting for input

三、贝叶斯统计与MCMC

waiting for input

四、BKMR方法总结

waiting for input

五、R package-BKMR的应用

waiting for input


总结

帮助读者了解BKMR并不是本文写作的目的,我认为更有意义的应该是了解该方法产生的思路,即由经典的方法出发,在遭遇相应问题时寻找是否存在解决问题的方法,逐步收束问题,最终提出解决方案(当然,很多情况下会以失败告终)。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值