EM算法与GMM的训练应用

本文深入探讨了Gaussian Mixture Model(GMM)及其在机器学习、计算机视觉领域的应用,如聚类、概率密度估计和背景建模。文章详细介绍了EM(Expectation-Maximization)算法,利用Jensen不等式解决参数估计问题,以及在E-step和M-step中的操作。此外,还提供了GMM训练过程中的参数更新公式,并展示了一个1维数据2个高斯混合概率密度估计的Matlab实现例子。
摘要由CSDN通过智能技术生成
注:本文主要参考Andrew Ng的Lecture notes 8,并结合自己的理解和扩展完成。本文有的数学推导过程并不是那么的严密,主要原因是本文的目的在于理解原理,若数学推导过于严密则文章会过于冗长。

GMM简介

GMM(Gaussian mixture model) 混合高斯模型在机器学习、计算机视觉等领域有着广泛的应用。其典型的应用有概率密度估计、背景建模、聚类等。

GMM用于聚类

图1 GMM用于聚类

GMM用于概率密度估计

图2 GMM用于概率密度估计

GMM用于背景建模

图3 GMM用于背景建模
我们以聚类为例子进行简单讨论。如图1所示,假设我们有m个样本点,其坐标数据为{ x(1) , x(2) , x(3) ,…, x(m) }(注: x(i) 为向量)。假设m个数据分别属于k个类别(图1中k=2),且不知道每个样本点 x(i) 属于哪一个类。假设每个类的分布函数都是高斯分布,那我们该如何求得每个点所属的类别?以及每个高斯分量的参数?我们先尝试最大似然估计。
回顾最大似然估计(MLE)的思想:已经出现的样本,应该是出现概率最大的样本。有似然函数:
L(θ)=i=1mp(x(i),z(i);u,Σ,ϕ)
L(θ) 就是当前m个样本出现个概率,我们使其最大化就得到了 θ 的估计值 θ^ ; p(x(i),z(i);u,Σ,ϕ) 是样本 x(i) 出现的概率; z(i) 是指第i属于z类;u是高斯分布的均值; Σ 是高斯分布的方差; ϕ 为其他参数。为计算方便,对上式两边取对数,得到对数似然函数。
l(θ)=log(L(θ))=log(i=1mp(x(i),z(i);u,Σ,ϕ))=i=1mlog(p(x(i),z(i);u,Σ,ϕ))
上说道,GMM的表达式为k个高斯分布的叠加,所以有
p(x(i),z(i);u,Σ,ϕ)=z(i)=1mp(x(i)|z(i);uz(i),Σz(i))p(z(i);ϕ)
p(z(i);ϕ) p(z(i)) z(i) 的先验概率。上式中x和z为自变量; u,Σ,ϕ 为需要估计的参数。 p(x(i)|z(i);uz(i),Σz(i)) 为高斯分布我们可以写出解析式,但是 p(z(i);ϕ) 的形式是未知的。所以不能直接对 l(θ) 求偏导取极值。考虑到 z(i) 不能直接由观测得到,称其为隐藏变量(latent variable)。此时的参数估计问题可以写为下式
argmaxl(θ)=argmaxi=1mlog(z(i)=1mp(x(i)|z(i);uz(i),Σz(i))p(z(i);ϕ))
为了求解上式,引入EM算法(Expectation-Maximization Algorithm)。我们从Jensen不等式开始讨论EM算法。

Jensen不等式

若实函数f(x)存在二阶导 f′′(x) 且有 f′′(x)0 ,则f(x)为凸函数(convex function 注:此处的定义可能与国内教材不同)。 f(x) 的值域为 I ,则对于
a,bI,0λ1
有以下不等式成立:
f(λa+(1λ)
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值