本文涉及知识点
P9911 [COCI 2023/2024 #2] Kuglice
题目描述
一个双端队列里面有 n n n 个球,每个球有一个颜色。A 和 B 玩一个游戏:
A 先手,两个人轮流操作,每次从队列的最左端或者最右端拿出一个球,如果这种颜色的球是第一次被拿出,拿出它的人获得 1 1 1 分。所有球都拿完后游戏结束。
假设 A 和 B 都以最优策略操作,请求出最终得分是多少。
输入格式
第一行一个整数 n n n。
第二行 n n n 个整数 a 1 ∼ n a_{1\sim n} a1∼n 表示从左到右每个球的颜色。
输出格式
输出一行两个以 :
隔开的整数(形如 a:b
),a
表示 A 最终的得分,b
表示 B 最终的得分。
输入输出样例 #1
输入 #1
5
1 1 2 1 1
输出 #1
1:1
输入输出样例 #2
输入 #2
6
1 2 3 1 2 3
输出 #2
2:1
说明/提示
数据范围
Subtask \text{Subtask} Subtask | 分值 | 特殊性质 |
---|---|---|
1 1 1 | 17 17 17 | a i ≤ 2 a_i\le 2 ai≤2 |
2 2 2 | 10 10 10 | n ≤ 20 n\le 20 n≤20 |
3 3 3 | 26 26 26 | a i ≤ 20 a_i\le 20 ai≤20 |
4 4 4 | 15 15 15 | n ≤ 300 n\le 300 n≤300 |
5 5 5 | 42 42 42 | 无 |
对于所有数据, 1 ≤ n ≤ 3000 1\le n\le 3000 1≤n≤3000, 1 ≤ a i ≤ n 1\le a_i\le n 1≤ai≤n。
动态规划 错误解放
right[i]= x,表示 a [ x ] = i , 且 x 最大,即颜色 i 的最右球 a[x]=i,且x最大,即颜色i的最右球 a[x]=i,且x最大,即颜色i的最右球,如果不存在,-1;left[i]=x,颜色i最左的球,如果不存在为N。
动态规划的状态表示
dp[left][r]表示左边选择left个球,右边选取了r个球最后行动者与对手最大得分差。空间复杂度:O(nn)
动态规划的填表顺序
枚举前驱状态,第一层循环 sel = 0 to N-1 ,第二层循环 left = 0 to sel.
r = sel - left。
动态规划的转移方程
对每个前驱状态,从左边选择一个球。MaxSelf(dp[left+1][r],(left[a[left]]==left)&&(right[a[left]] < N-r)
从右边选择球,类似。
动态规划的初始值
全部为0
动态规划的返回值
先手方得分:dp[0][0],后手方得分:颜色数-dp[0][0]
错误原因
如果是N是奇数,目标是最大得分;如果N是偶数,目标是最小得分。
动态规划 记忆和搜索
这样就好理解了。
Cal(sel,lsel) 返回先手方、后手放最大分数差。
返回值的先手方就是(Cal(0,0)+颜色数)/2
代码
核心代码
#include <iostream>
#include <sstream>
#include <vector>
#include<map>
#include<unordered_map>
#include<set>
#include<unordered_set>
#include<string>
#include<algorithm>
#include<functional>
#include<queue>
#include <stack>
#include<iomanip>
#include<numeric>
#include <math.h>
#include <climits>
#include<assert.h>
#include<cstring>
#include<list>
#include<array>
#include <bitset>
using namespace std;
template<class T1, class T2>
std::istream& operator >> (std::istream& in, pair<T1, T2>& pr) {
in >> pr.first >> pr.second;
return in;
}
template<class T1, class T2, class T3 >
std::istream& operator >> (std::istream& in, tuple<T1, T2, T3>& t) {
in >> get<0>(t) >> get<1>(t) >> get<2>(t);
return in;
}
template<class T1, class T2, class T3, class T4 >
std::istream& operator >> (std::istream& in, tuple<T1, T2, T3, T4>& t) {
in >> get<0>(t) >> get<1>(t) >> get<2>(t) >> get<3>(t);
return in;
}
template<class T1, class T2, class T3, class T4, class T5, class T6, class T7 >
std::istream& operator >> (std::istream& in, tuple<T1, T2, T3, T4,T5,T6,T7>& t) {
in >> get<0>(t) >> get<1>(t) >> get<2>(t) >> get<3>(t) >> get<4>(t) >> get<5>(t) >> get<6>(t);
return in;
}
template<class T = int>
vector<T> Read() {
int n;
cin >> n;
vector<T> ret(n);
for (int i = 0; i < n; i++) {
cin >> ret[i];
}
return ret;
}
template<class T = int>
vector<T> ReadNotNum() {
vector<T> ret;
T tmp;
while (cin >> tmp) {
ret.emplace_back(tmp);
if ('\n' == cin.get()) { break; }
}
return ret;
}
template<class T = int>
vector<T> Read(int n) {
vector<T> ret(n);
for (int i = 0; i < n; i++) {
cin >> ret[i];
}
return ret;
}
template<int N = 1'000'000>
class COutBuff
{
public:
COutBuff() {
m_p = puffer;
}
template<class T>
void write(T x) {
int num[28], sp = 0;
if (x < 0)
*m_p++ = '-', x = -x;
if (!x)
*m_p++ = 48;
while (x)
num[++sp] = x % 10, x /= 10;
while (sp)
*m_p++ = num[sp--] + 48;
AuotToFile();
}
void writestr(const char* sz) {
strcpy(m_p, sz);
m_p += strlen(sz);
AuotToFile();
}
inline void write(char ch)
{
*m_p++ = ch;
AuotToFile();
}
inline void ToFile() {
fwrite(puffer, 1, m_p - puffer, stdout);
m_p = puffer;
}
~COutBuff() {
ToFile();
}
private:
inline void AuotToFile() {
if (m_p - puffer > N - 100) {
ToFile();
}
}
char puffer[N], * m_p;
};
template<int N = 1'000'000>
class CInBuff
{
public:
inline CInBuff() {}
inline CInBuff<N>& operator>>(char& ch) {
FileToBuf();
while (('\r' == *S) || ('\n' == *S) || (' ' == *S)) { S++; }//忽略空格和回车
ch = *S++;
return *this;
}
inline CInBuff<N>& operator>>(int& val) {
FileToBuf();
int x(0), f(0);
while (!isdigit(*S))
f |= (*S++ == '-');
while (isdigit(*S))
x = (x << 1) + (x << 3) + (*S++ ^ 48);
val = f ? -x : x; S++;//忽略空格换行
return *this;
}
inline CInBuff& operator>>(long long& val) {
FileToBuf();
long long x(0); int f(0);
while (!isdigit(*S))
f |= (*S++ == '-');
while (isdigit(*S))
x = (x << 1) + (x << 3) + (*S++ ^ 48);
val = f ? -x : x; S++;//忽略空格换行
return *this;
}
template<class T1, class T2>
inline CInBuff& operator>>(pair<T1, T2>& val) {
*this >> val.first >> val.second;
return *this;
}
template<class T1, class T2, class T3>
inline CInBuff& operator>>(tuple<T1, T2, T3>& val) {
*this >> get<0>(val) >> get<1>(val) >> get<2>(val);
return *this;
}
template<class T1, class T2, class T3, class T4>
inline CInBuff& operator>>(tuple<T1, T2, T3, T4>& val) {
*this >> get<0>(val) >> get<1>(val) >> get<2>(val) >> get<3>(val);
return *this;
}
template<class T = int>
inline CInBuff& operator>>(vector<T>& val) {
int n;
*this >> n;
val.resize(n);
for (int i = 0; i < n; i++) {
*this >> val[i];
}
return *this;
}
template<class T = int>
vector<T> Read(int n) {
vector<T> ret(n);
for (int i = 0; i < n; i++) {
*this >> ret[i];
}
return ret;
}
template<class T = int>
vector<T> Read() {
vector<T> ret;
*this >> ret;
return ret;
}
private:
inline void FileToBuf() {
const int canRead = m_iWritePos - (S - buffer);
if (canRead >= 100) { return; }
if (m_bFinish) { return; }
for (int i = 0; i < canRead; i++)
{
buffer[i] = S[i];//memcpy出错
}
m_iWritePos = canRead;
buffer[m_iWritePos] = 0;
S = buffer;
int readCnt = fread(buffer + m_iWritePos, 1, N - m_iWritePos, stdin);
if (readCnt <= 0) { m_bFinish = true; return; }
m_iWritePos += readCnt;
buffer[m_iWritePos] = 0;
S = buffer;
}
int m_iWritePos = 0; bool m_bFinish = false;
char buffer[N + 10], * S = buffer;
};
class Solution {
public:
pair<int, int> Ans(vector<int>& a) {
const int N = a.size();
vector<int> left(N+1, N), r(N+1, -1);
for (int i = 0; i < N; i++) {
left[a[i]] = min(left[a[i]], i);
r[a[i]] = i;
}
vector<vector<int>> dp(N + 1, vector<int>(N + 1, -1));
function<int(int,int)> Cal = [&](int sel, int lsel) {
if (sel >= N) { return 0; }
if (-1 != dp[sel][lsel]) { return dp[sel][lsel]; }
const int rsel = sel - lsel;
int color = a[lsel];
const bool b1 = (left[color] == lsel) && (r[color] < N - rsel);
const int inx = N - 1 - rsel;
color = a[inx];
const bool b2 = (r[color] == inx) && (left[color] >= lsel);
return dp[sel][lsel] = max(b1 - Cal(sel + 1, lsel + 1), b2 - Cal(sel + 1, lsel));
};
const int colorCnt = (N + 1) - count(r.begin(), r.end(), -1);
const int i1 = (Cal(0, 0)+colorCnt)/2;
//奇数回合,先生进行最后一步操作
return make_pair(i1, colorCnt - i1);
}
};
int main() {
#ifdef _DEBUG
freopen("a.in", "r", stdin);
#endif // DEBUG
ios::sync_with_stdio(0); cin.tie(nullptr);
//CInBuff<> in; COutBuff<10'000'000> ob;
auto a = Read<int>();
#ifdef _DEBUG
//printf("M=%d,K=%d", M,K);
Out(a, ",a=");
//Out(str2, ",str2=");
//Out(que, ",ope=");
#endif // DEBUG
auto res = Solution().Ans(a);
cout << res.first <<":" << res.second << "\n";
return 0;
};
单元测试
vector<int> a;
TEST_METHOD(TestMlethod11)
{
a = { 1,1,2,1,1 };
auto res = Solution().Ans(a);
AssertEx({ 1,1 }, res);
}
TEST_METHOD(TestMethod12)
{
a = { 1,2,3,1,2,3 };
auto res = Solution().Ans(a);
AssertEx({ 2,1 }, res);
}
TEST_METHOD(TestMethod13)
{
a = { 1,1,2,1 };
auto res = Solution().Ans(a);
AssertEx({ 2,0 }, res);
}
扩展阅读
我想对大家说的话 |
---|
工作中遇到的问题,可以按类别查阅鄙人的算法文章,请点击《算法与数据汇总》。 |
学习算法:按章节学习《喜缺全书算法册》,大量的题目和测试用例,打包下载。重视操作 |
有效学习:明确的目标 及时的反馈 拉伸区(难度合适) 专注 |
闻缺陷则喜(喜缺)是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。 |
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。 |
如果程序是一条龙,那算法就是他的是睛 |
失败+反思=成功 成功+反思=成功 |
视频课程
先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176
测试环境
操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。