【动态规划】P9911 [COCI 2023/2024 #2] Kuglice|普及+

本文涉及知识点

C++动态规划

P9911 [COCI 2023/2024 #2] Kuglice

题目描述

一个双端队列里面有 n n n 个球,每个球有一个颜色。A 和 B 玩一个游戏:

A 先手,两个人轮流操作,每次从队列的最左端或者最右端拿出一个球,如果这种颜色的球是第一次被拿出,拿出它的人获得 1 1 1 分。所有球都拿完后游戏结束。

假设 A 和 B 都以最优策略操作,请求出最终得分是多少。

输入格式

第一行一个整数 n n n

第二行 n n n 个整数 a 1 ∼ n a_{1\sim n} a1n 表示从左到右每个球的颜色。

输出格式

输出一行两个以 : 隔开的整数(形如 a:b),a 表示 A 最终的得分,b 表示 B 最终的得分。

输入输出样例 #1

输入 #1

5
1 1 2 1 1

输出 #1

1:1

输入输出样例 #2

输入 #2

6
1 2 3 1 2 3

输出 #2

2:1

说明/提示

数据范围

Subtask \text{Subtask} Subtask分值特殊性质
1 1 1 17 17 17 a i ≤ 2 a_i\le 2 ai2
2 2 2 10 10 10 n ≤ 20 n\le 20 n20
3 3 3 26 26 26 a i ≤ 20 a_i\le 20 ai20
4 4 4 15 15 15 n ≤ 300 n\le 300 n300
5 5 5 42 42 42

对于所有数据, 1 ≤ n ≤ 3000 1\le n\le 3000 1n3000 1 ≤ a i ≤ n 1\le a_i\le n 1ain

动态规划 错误解放

right[i]= x,表示 a [ x ] = i , 且 x 最大,即颜色 i 的最右球 a[x]=i,且x最大,即颜色i的最右球 a[x]=i,x最大,即颜色i的最右球,如果不存在,-1;left[i]=x,颜色i最左的球,如果不存在为N。

动态规划的状态表示

dp[left][r]表示左边选择left个球,右边选取了r个球最后行动者与对手最大得分差。空间复杂度:O(nn)

动态规划的填表顺序

枚举前驱状态,第一层循环 sel = 0 to N-1 ,第二层循环 left = 0 to sel.
r = sel - left。

动态规划的转移方程

对每个前驱状态,从左边选择一个球。MaxSelf(dp[left+1][r],(left[a[left]]==left)&&(right[a[left]] < N-r)
从右边选择球,类似。

动态规划的初始值

全部为0

动态规划的返回值

先手方得分:dp[0][0],后手方得分:颜色数-dp[0][0]

错误原因

如果是N是奇数,目标是最大得分;如果N是偶数,目标是最小得分。

动态规划 记忆和搜索

这样就好理解了。
Cal(sel,lsel) 返回先手方、后手放最大分数差。
返回值的先手方就是(Cal(0,0)+颜色数)/2

代码

核心代码

#include <iostream>
#include <sstream>
#include <vector>
#include<map>
#include<unordered_map>
#include<set>
#include<unordered_set>
#include<string>
#include<algorithm>
#include<functional>
#include<queue>
#include <stack>
#include<iomanip>
#include<numeric>
#include <math.h>
#include <climits>
#include<assert.h>
#include<cstring>
#include<list>
#include<array>

#include <bitset>
using namespace std;

template<class T1, class T2>
std::istream& operator >> (std::istream& in, pair<T1, T2>& pr) {
	in >> pr.first >> pr.second;
	return in;
}

template<class T1, class T2, class T3 >
std::istream& operator >> (std::istream& in, tuple<T1, T2, T3>& t) {
	in >> get<0>(t) >> get<1>(t) >> get<2>(t);
	return in;
}

template<class T1, class T2, class T3, class T4 >
std::istream& operator >> (std::istream& in, tuple<T1, T2, T3, T4>& t) {
	in >> get<0>(t) >> get<1>(t) >> get<2>(t) >> get<3>(t);
	return in;
}

template<class T1, class T2, class T3, class T4, class T5, class T6, class T7 >
std::istream& operator >> (std::istream& in, tuple<T1, T2, T3, T4,T5,T6,T7>& t) {
	in >> get<0>(t) >> get<1>(t) >> get<2>(t) >> get<3>(t) >> get<4>(t) >> get<5>(t) >> get<6>(t);
	return in;
}

template<class T = int>
vector<T> Read() {
	int n;
	cin >> n;
	vector<T> ret(n);
	for (int i = 0; i < n; i++) {
		cin >> ret[i];
	}
	return ret;
}
template<class T = int>
vector<T> ReadNotNum() {
	vector<T> ret;
	T tmp;
	while (cin >> tmp) {
		ret.emplace_back(tmp);
		if ('\n' == cin.get()) { break; }
	}
	return ret;
}

template<class T = int>
vector<T> Read(int n) {
	vector<T> ret(n);
	for (int i = 0; i < n; i++) {
		cin >> ret[i];
	}
	return ret;
}

template<int N = 1'000'000>
class COutBuff
{
public:
	COutBuff() {
		m_p = puffer;
	}
	template<class T>
	void write(T x) {
		int num[28], sp = 0;
		if (x < 0)
			*m_p++ = '-', x = -x;

		if (!x)
			*m_p++ = 48;

		while (x)
			num[++sp] = x % 10, x /= 10;

		while (sp)
			*m_p++ = num[sp--] + 48;
		AuotToFile();
	}
	void writestr(const char* sz) {
		strcpy(m_p, sz);
		m_p += strlen(sz);
		AuotToFile();
	}
	inline void write(char ch)
	{
		*m_p++ = ch;
		AuotToFile();
	}
	inline void ToFile() {
		fwrite(puffer, 1, m_p - puffer, stdout);
		m_p = puffer;
	}
	~COutBuff() {
		ToFile();
	}
private:
	inline void AuotToFile() {
		if (m_p - puffer > N - 100) {
			ToFile();
		}
	}
	char  puffer[N], * m_p;
};

template<int N = 1'000'000>
class CInBuff
{
public:
	inline CInBuff() {}
	inline CInBuff<N>& operator>>(char& ch) {
		FileToBuf();
		while (('\r' == *S) || ('\n' == *S) || (' ' == *S)) { S++; }//忽略空格和回车
		ch = *S++;
		return *this;
	}
	inline CInBuff<N>& operator>>(int& val) {
		FileToBuf();
		int x(0), f(0);
		while (!isdigit(*S))
			f |= (*S++ == '-');
		while (isdigit(*S))
			x = (x << 1) + (x << 3) + (*S++ ^ 48);
		val = f ? -x : x; S++;//忽略空格换行		
		return *this;
	}
	inline CInBuff& operator>>(long long& val) {
		FileToBuf();
		long long x(0); int f(0);
		while (!isdigit(*S))
			f |= (*S++ == '-');
		while (isdigit(*S))
			x = (x << 1) + (x << 3) + (*S++ ^ 48);
		val = f ? -x : x; S++;//忽略空格换行
		return *this;
	}
	template<class T1, class T2>
	inline CInBuff& operator>>(pair<T1, T2>& val) {
		*this >> val.first >> val.second;
		return *this;
	}
	template<class T1, class T2, class T3>
	inline CInBuff& operator>>(tuple<T1, T2, T3>& val) {
		*this >> get<0>(val) >> get<1>(val) >> get<2>(val);
		return *this;
	}
	template<class T1, class T2, class T3, class T4>
	inline CInBuff& operator>>(tuple<T1, T2, T3, T4>& val) {
		*this >> get<0>(val) >> get<1>(val) >> get<2>(val) >> get<3>(val);
		return *this;
	}
	template<class T = int>
	inline CInBuff& operator>>(vector<T>& val) {
		int n;
		*this >> n;
		val.resize(n);
		for (int i = 0; i < n; i++) {
			*this >> val[i];
		}
		return *this;
	}
	template<class T = int>
	vector<T> Read(int n) {
		vector<T> ret(n);
		for (int i = 0; i < n; i++) {
			*this >> ret[i];
		}
		return ret;
	}
	template<class T = int>
	vector<T> Read() {
		vector<T> ret;
		*this >> ret;
		return ret;
	}
private:
	inline void FileToBuf() {
		const int canRead = m_iWritePos - (S - buffer);
		if (canRead >= 100) { return; }
		if (m_bFinish) { return; }
		for (int i = 0; i < canRead; i++)
		{
			buffer[i] = S[i];//memcpy出错			
		}
		m_iWritePos = canRead;
		buffer[m_iWritePos] = 0;
		S = buffer;
		int readCnt = fread(buffer + m_iWritePos, 1, N - m_iWritePos, stdin);
		if (readCnt <= 0) { m_bFinish = true; return; }
		m_iWritePos += readCnt;
		buffer[m_iWritePos] = 0;
		S = buffer;
	}
	int m_iWritePos = 0; bool m_bFinish = false;
	char buffer[N + 10], * S = buffer;
};

class Solution {
		public:
			pair<int, int> Ans(vector<int>& a) {
				const int N = a.size();
				vector<int> left(N+1, N), r(N+1, -1);
				for (int i = 0; i < N; i++) {
					left[a[i]] = min(left[a[i]], i);
					r[a[i]] = i;
				}
				vector<vector<int>> dp(N + 1, vector<int>(N + 1, -1));
				function<int(int,int)> Cal = [&](int sel, int lsel) {
					if (sel >= N) { return 0; }
					if (-1 != dp[sel][lsel]) { return dp[sel][lsel]; }
					const int rsel = sel - lsel;
					int color = a[lsel];
					const bool b1 = (left[color] == lsel) && (r[color] < N - rsel);
					const int inx = N - 1 - rsel;
					color = a[inx];
					const bool b2 = (r[color] == inx) && (left[color] >= lsel);
					return dp[sel][lsel] = max(b1 - Cal(sel + 1, lsel + 1), b2 - Cal(sel + 1, lsel));
				};
				const int colorCnt = (N + 1) - count(r.begin(), r.end(), -1);
				const int i1 = (Cal(0, 0)+colorCnt)/2;
				//奇数回合,先生进行最后一步操作
				return make_pair(i1, colorCnt - i1);
			}
		};

int main() {
#ifdef _DEBUG
	freopen("a.in", "r", stdin);
#endif // DEBUG	
	ios::sync_with_stdio(0); cin.tie(nullptr);
	//CInBuff<> in; COutBuff<10'000'000> ob;
	auto a = Read<int>();
#ifdef _DEBUG	
		//printf("M=%d,K=%d", M,K);
		Out(a, ",a=");
		//Out(str2, ",str2=");
		//Out(que, ",ope=");
#endif // DEBUG		
		auto res = Solution().Ans(a);		
		cout << res.first <<":" << res.second << "\n";
	return 0;
};

单元测试

vector<int> a;
		TEST_METHOD(TestMlethod11)
		{
			a = { 1,1,2,1,1 };
			auto res = Solution().Ans(a);
			AssertEx({ 1,1 }, res);
		}
		TEST_METHOD(TestMethod12)
		{
			a = { 1,2,3,1,2,3 };
			auto res = Solution().Ans(a);
			AssertEx({ 2,1 }, res);
		}
		TEST_METHOD(TestMethod13)
		{
			a = { 1,1,2,1 };
			auto res = Solution().Ans(a);
			AssertEx({ 2,0 }, res);
		}

扩展阅读

我想对大家说的话
工作中遇到的问题,可以按类别查阅鄙人的算法文章,请点击《算法与数据汇总》。
学习算法:按章节学习《喜缺全书算法册》,大量的题目和测试用例,打包下载。重视操作
有效学习:明确的目标 及时的反馈 拉伸区(难度合适) 专注
闻缺陷则喜(喜缺)是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛
失败+反思=成功 成功+反思=成功

视频课程

先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

评论 41
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

软件架构师何志丹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值