Abner

博观而约取,厚积而薄发,不可择焉不精,语焉不详!

The Balance POJ 2142

#include #include #include #include using namespace std; typedef long long LL; const int INF = 100000000; LL fabs(LL a) { if( a < 0 ...

2014-02-23 16:02:22

阅读数:450

评论数:0

poj 2142 The Balance

本题是求ax + by = c 的一组解,要求|x| + |y| 尽可能小,若存在相等,则使a * |x| + b * |y| 尽可能小;如果x b0, |x|  + |y| = |x0 + (b/d)*t| + |y0 - (a/d) * t|,因此最小值在|y0 - (a/d) * t|附近...

2014-01-05 18:07:21

阅读数:549

评论数:0

hdu1788 Chinese remainder theorem again

求最小公倍数;Lcm 的数据类型是LL, 忽略了,WA了一次! 本题要求的是N%Mi = Mi - a; 即:N%Mi + a = Mi;则有:N + a ≡ 0 ( mod Mi); 定理:若有:a ≡ b(mod mi),当且仅当:a ≡ b (mod [m1 * m2 * ·······...

2014-01-02 20:18:53

阅读数:543

评论数:0

poj 1006 Biorhythms

#include #include #include using namespace std; int m[4], a[4]; int M; void Ex_Gcd(int a, int b, int &d, int &x, int &y) { if(b...

2014-01-02 19:54:19

阅读数:390

评论数:0

poj 1995 Raising Modulo Numbers

#include #include #include using namespace std; typedef long long LL; LL Quick_Mod(LL a, LL b, LL m) { LL ans = 1; while(b) { ...

2014-01-02 01:56:12

阅读数:448

评论数:0

POJ 3233

矩阵的快速幂模m #include #include #include using namespace std; const int MAXN = 110; struct Matrax { int m[MAXN][MAXN]; }; Matrax a, per; int n, m;...

2014-01-01 20:16:08

阅读数:386

评论数:0

hdu 3579 Hello Kiki

题目:点击打开题目 #include #include #include using namespace std; typedef long long LL; const int MAXN = 10; LL Gcd(LL a, LL b) { return b == 0 ? ...

2013-12-20 14:35:37

阅读数:580

评论数:0

hdu 1573 X问题

#include #include #include using namespace std; const int MAXN = 15; typedef long long LL; LL Gcd(LL a, LL b) { if(b == 0) return a...

2013-12-20 12:09:21

阅读数:593

评论数:0

poj 2115 C Looooops

#include #include #include using namespace std; typedef long long LL; void Ex_Gcd(LL a, LL b, LL &d, LL &x, LL &y) { if(b == 0)...

2013-12-18 21:22:20

阅读数:546

评论数:0

poj 2891 Strange Way to Express Integers

#include #include #include using namespace std; void Ex_Gcd(long long a, long long b, long long &d, long long &x, long long &y) { ...

2013-12-12 21:15:03

阅读数:524

评论数:0

同余问题怎么求解最小正整数解

一:若gcd(a, b) = 1,则方程ax ≡ c (mod b)在[0, b-1]上有唯一解。 证明:     存在性:存在整数k和l使a*k + b*l = gcd(a, b) = 1,即我们可以求出ax ≡ 1 (mod b)的解x0。当然,两边乘以c有a(cx0) ≡ c (mod...

2013-12-12 19:23:46

阅读数:1043

评论数:0

nefu 84

#include using namespace std; long long Extended_Gcd(long long a, long long b, long long &x, long long &y) { if(b == 0) { ...

2013-12-10 17:58:46

阅读数:459

评论数:0

hdu 2035 人见人爱A^B

设:a%m = r1, b %  m = r2, 则:(a*b) % m = (a%m)*(b%m)%m; 令: a = k1 *m + r1, b = k2 * m + r2; 则:a*b = ( k1*m+r1 ) * (k2*m + r2) = (k1*k2*m^2 + k1*m*r2 ...

2013-12-10 13:52:51

阅读数:1114

评论数:0

hdu 1021 Fibonacci Again

设a%m = r1, b%m = r2,则:(a+b)%m = (r1 + r2)%m = (a%m + b%m)%m; 令:a = k1 * m + r1; b = k2 * m + r2; 则:(a+b)%m = (k1*m + r1 + k2 * m + r2)%m = ((k1 + k...

2013-12-10 13:33:09

阅读数:566

评论数:0

poj 2769

同余问题: #include #include #include using namespace std; const int MAXN = 310; int main() { bool p[100010]; int arr[MAXN]; int T; ...

2013-12-10 13:04:49

阅读数:549

评论数:0

提示
确定要删除当前文章?
取消 删除