Abner

博观而约取,厚积而薄发,不可择焉不精,语焉不详!

排序:
默认
按更新时间
按访问量

数据挖掘面试笔试题(附答案)

一、单选题(共80题) 1、( D )的目的缩小数据的取值范围,使其更适合于数据挖掘算法的需要,并且能够得到和原始数据相同的分析结果。 A.数据清洗       B.数据集成 C.数据变换       D.数据归约 2、某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于...

2018-09-18 09:40:35

阅读数:80

评论数:0

详细展示RNN的网络结构

下面简单介绍一下RNN的结构,如果简略地去看,RNN结构很简单,根本没有CNN那么复杂,但是要具体实现,还是需要仔细思考一下,希望本篇博客能把RNN结构说的明白。 循环神经网络(Recurrent Neural Network,RNN)DNN以及CNN在对样本提取特征的时候,样本与样本之间是独立...

2018-09-17 20:27:54

阅读数:10

评论数:0

图示Softmax及交叉熵损失函数

Softmax函数 Softmax是将神经网络得到的多个值,进行归一化处理,使得到的值在之间,让结果变得可解释。即可以将结果看作是概率,某个类别概率越大,将样本归为该类别的可能性也就越高。Softmax就如下图(借鉴李宏毅老师的课件) SoftMax 为了更加清晰的看清整个过程,我将其制作...

2018-09-14 22:21:18

阅读数:14

评论数:0

通俗理解LDA主题模型

转自:https://blog.csdn.net/v_july_v/article/details/41209515 0 前言     印象中,最开始听说“LDA”这个名词,是缘于rickjin在2013年3月写的一个LDA科普系列,叫LDA数学八卦,我当时一直想看来着,记得还打印过一次,但不...

2018-09-06 21:59:20

阅读数:290

评论数:0

白话EM算法

EM算法其实就是一种函数的近似求解方法,它是一种迭代算法,在很多算法中都有着重要的应用,比如HMM的学习问题,GMM,语音识别中的MM-GMM以及主题模型PLSA等等,所以掌握EM的求解方式还是很必要的。本文参考李航博士的《统计学习方法》,但前提是需要了解EM以及高斯混合分布的基本概念,我不从最基...

2018-09-04 21:31:14

阅读数:19

评论数:0

奇异值分解(SVD)小结

目录 阵的简单理解 矩阵作用于向量 用矩阵的表达一个实体 特征值和特征向量 奇异值分解 Hermitian矩阵 共轭转置 酉矩阵 谈谈《数学之美》对SVD的理解 阵的简单理解 矩阵从我的理解来看,可以从两个角度来看。一个是矩阵是作用于向量,一个是矩阵表达一个实体。 矩阵作用...

2018-08-15 16:06:33

阅读数:46

评论数:0

最大熵模型

本篇博客只是最近两天看最大熵模型的一个理解和简单总结,只为了阐述清楚最大熵模型,不涉及公式推导。为了怕很快忘记,特意综述一下,如有不正确之处欢迎指正。 最大熵原理 熵:某种意义上说,概率是度量随机事件的确定性,熵是度量随机事件的不确定性。对于随机变量的概率分布来说,随机变量的分布越均匀...

2018-08-09 16:39:32

阅读数:38

评论数:0

隐马尔科夫模型前向后向算法

本文是自己学习隐马尔科夫模型的一个总结,为了自己以后方便查阅,也算作是李航老师的《统计学习方法》的一个总结,若有疑问,欢迎讨论。推荐阅读知乎上Yang Eninala写的《如何用简单易懂的例子解释隐马尔可夫模型?》,写的非常好。我会联系两者,来作为自己的一篇学习笔记。隐马尔可夫模型: 隐马尔可夫模...

2017-09-13 12:09:56

阅读数:612

评论数:0

一文总结条件熵、交叉熵、相对熵、互信息

条件熵:H(Y|X)表示在已知随机变量X的条件下,随机变量Y的不确定性,H(Y|X)定义为:举个例子:有一堆西瓜,已知这堆西瓜的色泽,以及每种色泽对应好瓜和坏瓜的个数,如下所示,设X表示色泽,Y表示好瓜或者坏瓜。则:这个例子就是计算条件熵的一个过程,现在证明条件熵公式:有很多书上的条件熵是这么定义...

2017-09-07 22:13:40

阅读数:1595

评论数:0

彻底理解样本方差为何除以n-1

设样本均值为,样本方差为,总体均值为,总体方差为,那么样本方差有如下公式:    很多人可能都会有疑问,为什么要除以n-1,而不是n,但是翻阅资料,发现很多都是交代到,如果除以n,对样本方差的估计不是无偏估计,比总体方差要小,要想是无偏估计就要调小分母,所以除以n-1,那么问题来了,为什么不是除以...

2017-09-06 00:10:35

阅读数:43381

评论数:12

如何理解用信息熵来表示最短的平均编码长度

之前弄明白了信息熵是什么,由于信息熵来源于信息论,要怎么才能跟编码联系起来呢?这个问题当时没有想明白,今天查了一下资料,理解了一下,做笔记整理一下,如有错误欢迎指正。如果信息熵不明白的请看这里:http://blog.csdn.net/hearthougan/article/details/761...

2017-09-01 23:27:31

阅读数:563

评论数:1

白话信息熵

距离有近有远,时间有长有短,温度有高有低,我们知道可以用米或者千米来度量距离,用时分秒可以来度量时间的长短,用摄氏度或者华氏度来度量温度的高低,那么我们常说这个信息多,那个信息少,那么信息的多少用什么度量呢?熵! 信息量是了解一个未知事物需要查询的

2017-08-04 03:19:58

阅读数:586

评论数:0

朴素贝叶斯分类器

分类器就是根据某一事物一系列特征来判断该事物的类别,。其实原理很简单,并不需要什么复杂的训练结构,复杂只是计算量,这个交给计算机即可,所以懂了原理,朴素贝叶斯分类器也就掌握了。先不写理论,以例子开始,希望能说的浅显易懂。 一、西瓜的好坏 这里是要借鉴周志华老师书中西瓜的例子,这个例子也是我所看到的...

2017-07-27 15:26:12

阅读数:630

评论数:0

浅谈全概率公式和贝叶斯公式

一、条件概率公式 条件概率由文氏图出发,比较容易理解: 表示B发生后A发生的概率,由上图可以看出B发生后,A再发生的概率就是,因此: 由: 得: 这就是条件概率公式。 假如事件A与B相互独立,那么: 注: 相互独立,两个事件表示成文氏图,也可以画成上图形式,相互独立:表示两个...

2017-07-15 16:25:56

阅读数:5387

评论数:4

卷积神经网络反向传播理论推导

本文首先简单介绍CNN的结构,并不作详细介绍,若需要了解推荐看CS231n课程笔记翻译:卷积神经网络笔记。本文只要讲解CNN的反向传播,CNN的反向传播,其实并不是大多所说的和全连接的BP类似,CNN的全连接部分的BP是与它相同,但是CNN中卷积--池化、池化--卷积部分的BP是不一样的,仔细推导...

2017-06-08 10:44:25

阅读数:9811

评论数:16

人工神经网络

一、神经网络的模型: 图1 两层全连接神经网络模型     这个是一个带有两个全连接层的神经网络,神经网络,一般不把输入层算在层数之中。 1、神经元: 图2 神经元的数学模型     从单个神经元来看,每个神经元可以看做是一个感知机,可以用来做决策,从图中可以看出,根据输入的线性组合,经过...

2017-05-24 23:45:16

阅读数:3653

评论数:0

线性分类器-KNN、多类SVM、Softmax

本文只是记录一下实现的代码,具体的思想还请看cs231n的课程笔记,其讲解的非常好,智能单元翻译的也很不错。 一、CIFAR-10数据集: 图1 CIFAR-10示例 二、KNN 图2 KNN分类器示例   如图所示,K的取值不同得出来的分类结果也可能是不同的,因此需要对k进行寻参,找出在...

2017-05-11 16:22:52

阅读数:876

评论数:0

支持向量机(SVM)(四)----SMO

我们前几节说了线性可分,以及在低维线性不可分,但是在高维是线性可分的。还有一种情况,如下图:     这种因奇异点而造成的划分平面不合理的移动,不是我们所想的,或者因为个别奇异点导致线性不可分,其余的大部分的点都是线性可分的,如果因此 就映射到高维来解决,那么也不值当,如下的情况:    ...

2017-03-07 01:07:02

阅读数:664

评论数:0

支持向量机(SVM)(三)----核函数及正则化

上一节最后我们说到我们根据求得的,可求得,,然后求出决策函数,但是我们知道: 是的函数,我们也许不必把带入上式来求解,我们直接把上式带入决策函数可有:     假如我们已经求得最优的,在作出预测的时候,我们可以只进行输入数据x与训练样本的内积即可。在转化为对偶条件的时候,我们知道要满...

2017-03-07 01:06:16

阅读数:2300

评论数:0

支持向量机(SVM)(二)----对偶

==============================================     本文根据Andrew NG的课程来梳理一下svm的思路。如有错误,欢迎指正。 ==============================================     上小节,我们...

2017-03-07 01:04:28

阅读数:443

评论数:0

提示
确定要删除当前文章?
取消 删除