Abner

博观而约取,厚积而薄发,不可择焉不精,语焉不详!

详细展示RNN的网络结构

下面简单介绍一下RNN的结构,如果简略地去看,RNN结构很简单,根本没有CNN那么复杂,但是要具体实现,还是需要仔细思考一下,希望本篇博客能把RNN结构说的明白。 循环神经网络(Recurrent Neural Network,RNN)DNN以及CNN在对样本提取特征的时候,样本与样本之间是独立...

2018-09-17 20:27:54

阅读数:6

评论数:0

图示Softmax及交叉熵损失函数

Softmax函数 Softmax是将神经网络得到的多个值,进行归一化处理,使得到的值在之间,让结果变得可解释。即可以将结果看作是概率,某个类别概率越大,将样本归为该类别的可能性也就越高。Softmax就如下图(借鉴李宏毅老师的课件) SoftMax 为了更加清晰的看清整个过程,我将其制作...

2018-09-14 22:21:18

阅读数:13

评论数:0

通俗理解LDA主题模型

转自:https://blog.csdn.net/v_july_v/article/details/41209515 0 前言     印象中,最开始听说“LDA”这个名词,是缘于rickjin在2013年3月写的一个LDA科普系列,叫LDA数学八卦,我当时一直想看来着,记得还打印过一次,但不...

2018-09-06 21:59:20

阅读数:290

评论数:0

白话EM算法

EM算法其实就是一种函数的近似求解方法,它是一种迭代算法,在很多算法中都有着重要的应用,比如HMM的学习问题,GMM,语音识别中的MM-GMM以及主题模型PLSA等等,所以掌握EM的求解方式还是很必要的。本文参考李航博士的《统计学习方法》,但前提是需要了解EM以及高斯混合分布的基本概念,我不从最基...

2018-09-04 21:31:14

阅读数:18

评论数:0

蒙特卡洛方法(Monte-Carlo Simulation)

目录   布封投针问题(Buffon's needle problem) 蒙特卡洛方法(Monte-Carlo Simulation) 估算PI 估计不规则图形的面积 随机抛点 采样估计 样本采集 拒绝采样(reject sample) 封投针问题(Buffon's needl...

2018-09-01 17:29:22

阅读数:56

评论数:0

奇异值分解(SVD)小结

目录 阵的简单理解 矩阵作用于向量 用矩阵的表达一个实体 特征值和特征向量 奇异值分解 Hermitian矩阵 共轭转置 酉矩阵 谈谈《数学之美》对SVD的理解 阵的简单理解 矩阵从我的理解来看,可以从两个角度来看。一个是矩阵是作用于向量,一个是矩阵表达一个实体。 矩阵作用...

2018-08-15 16:06:33

阅读数:46

评论数:0

最大熵模型

本篇博客只是最近两天看最大熵模型的一个理解和简单总结,只为了阐述清楚最大熵模型,不涉及公式推导。为了怕很快忘记,特意综述一下,如有不正确之处欢迎指正。 最大熵原理 熵:某种意义上说,概率是度量随机事件的确定性,熵是度量随机事件的不确定性。对于随机变量的概率分布来说,随机变量的分布越均匀...

2018-08-09 16:39:32

阅读数:38

评论数:0

提示
确定要删除当前文章?
取消 删除