Abner

博观而约取,厚积而薄发,不可择焉不精,语焉不详!

numpy.transpose()

    numpy.transpose()是对矩阵按照所需的要求的转置,比较难理解,现以例子来说明:

import numpy as np

a = np.array(range(30)).reshape(2, 3, 5)

print ("a = ")
print (a)

print "\n=====================\n"

print ("a.transpose() = ")
print (a.transpose(1, 0, 2))


输出:

a = 
[[[ 0  1  2  3  4]
  [ 5  6  7  8  9]
  [10 11 12 13 14]]

 [[15 16 17 18 19]
  [20 21 22 23 24]
  [25 26 27 28 29]]]
#一维数组中包含2个元素,每个元素是一个包含3个元素的数组,这三个元素每个元素同样又是一个包含5个元素的数组,这就是这个三维数组的解释。
=====================

a.transpose() = 
[[[ 0  1  2  3  4]
  [15 16 17 18 19]]

 [[ 5  6  7  8  9]
  [20 21 22 23 24]]

 [[10 11 12 13 14]
  [25 26 27 28 29]]]


       刚开始看这些数据,根本没有头绪,这就要理解transpose()中的参数的意义,因为数组a的shape为(2,3,5),是一个三维数组,那么这个元组对应的索引为:(0,1,2),也就是a.shape的下标:(2[0], 3[1], 5[2]), []中对应的是shape元组的索引。那么,现在,通过b = a.transpose(1, 0, 2),那么b.shape就变成(3, 2, 5),这就是说transpose就是改变高维数组的形状,形状改变了,那么里面的元素自然也要重新排列,比如:

      元素11在a中的位置是a[0][2][1],经过b = a.transpose(1, 0, 2)之后,11在b中的位置就变成b[2][0][1]。再比如元素28,在a中的位置a[1][2][3],在b中为:a[2][1][3].




阅读更多
版权声明:本文为博主原创文章,转载需注明出处。 https://blog.csdn.net/Hearthougan/article/details/72626643
文章标签: numpy Python
个人分类: python笔记
上一篇线性分类器-KNN、多类SVM、Softmax
下一篇人工神经网络
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭