Abner

博观而约取,厚积而薄发,不可择焉不精,语焉不详!

排序:
默认
按更新时间
按访问量

tf.strided_slice()

# -*- coding: utf-8 -*- """ Created on Tue Nov 6 10:46:32 2018 @author: Abner_hg """ import ...

2018-11-06 11:53:42

阅读数:15

评论数:0

python 从TXT中解析json格式

txt中的json格式: with open(r'Zhan.txt','r', encoding = 'utf-8') as file_open: data = json.load(file_open) for line in data: print(lin...

2018-10-24 14:19:10

阅读数:18

评论数:0

卷积神经网络的一些细节思考(卷积、池化层的作用)

卷积神经网络由卷积核来提取特征,通过池化层对显著特征进行提取,经过多次的堆叠,得到比较高级的特征,最后可以用分类器来分类。这是CNN的一个大概流程,其具体实现的结构是丰富多样的,但总的思想是统一的。 CNN整个的计算过程,最重要的有两点:组合性和局部不变性(平移、旋转、尺度放缩)。 组合性...

2018-10-20 10:47:53

阅读数:35

评论数:0

error while loading shared libraries: libpython3.7m(2.7).so.1.0: cannot open shared object file: N

Python3问题: ./out: error while loading shared libraries: libpython3.7m.so.1.0: cannot open shared object file: No such file or directory 解决办法: 1...

2018-10-16 16:50:58

阅读数:46

评论数:0

CRF++在Windows下以及Linux下的安装及测试方法

Windows与Linux下CRF++有两种不同的版本,很多时候官网无法下载,你如果需要下载CRF++,你可以点击这里下载这两个版本。 Windows 首先说一下Windows的安装方法(其实无需安装),以及简单的使用方法。 1、解压,进入crf++-0.58,你可以看到 2、你需...

2018-09-29 15:59:43

阅读数:90

评论数:0

NPP++去除文本中的重复行

方法一: 使用正则表达是的方式: ^(.*?)$\s+?^(?=.*^\1$) 如下图格式 方法二: 选择菜单TextFX   --    TextFX Tools: 1、选择"TextFx"-"TextFx Tools&a...

2018-09-27 17:39:16

阅读数:38

评论数:0

RNN二进制加法实例

本文是根据前两篇详细展示RNN的网络结构以及详细阐述基于时间的反向传播算法(Back-Propagation Through Time,BPTT)来找的一个RNN实例,本例子可以帮助对RNN的前向传播以及后向传播,以及RNN结构的理解。整个过程符合下图RNN结构描述: # -*- codi...

2018-09-25 15:04:35

阅读数:49

评论数:0

详细阐述基于时间的反向传播算法(Back-Propagation Through Time,BPTT)

上一节我们说了详细展示RNN的网络结构以及前向传播,在了解RNN的结构之后,如何训练RNN就是一个重要问题,训练模型就是更新模型的参数,也就是如何进行反向传播,也就意味着如何对参数进行求导。本篇内容就是详细介绍RNN的反向传播算法,即BPTT。 首先让我们来用动图来表示RNN的损失是如何产生的,...

2018-09-20 00:55:59

阅读数:97

评论数:0

详细展示RNN的网络结构

下面简单介绍一下RNN的结构,如果简略地去看,RNN结构很简单,根本没有CNN那么复杂,但是要具体实现,还是需要仔细思考一下,希望本篇博客能把RNN结构说的明白。 循环神经网络(Recurrent Neural Network,RNN)DNN以及CNN在对样本提取特征的时候,样本与样本之间是独立...

2018-09-17 20:27:54

阅读数:98

评论数:0

图示Softmax及交叉熵损失函数

Softmax函数 Softmax是将神经网络得到的多个值,进行归一化处理,使得到的值在之间,让结果变得可解释。即可以将结果看作是概率,某个类别概率越大,将样本归为该类别的可能性也就越高。Softmax就如下图(借鉴李宏毅老师的课件) SoftMax 为了更加清晰的看清整个过程,我将其制作...

2018-09-14 22:21:18

阅读数:48

评论数:0

windows下pip install xx 遇到的 ConnectionResetError<10054>问题

用pip install 遇到如下的问题 C:\Users\*******&amp;gt;pip install Python 3.X Collecting Python Retrying (Retry(total=4, connect=None, read=None, redi...

2018-09-08 09:20:56

阅读数:93

评论数:0

白话EM算法

EM算法其实就是一种函数的近似求解方法,它是一种迭代算法,在很多算法中都有着重要的应用,比如HMM的学习问题,GMM,语音识别中的MM-GMM以及主题模型PLSA等等,所以掌握EM的求解方式还是很必要的。本文参考李航博士的《统计学习方法》,但前提是需要了解EM以及高斯混合分布的基本概念,我不从最基...

2018-09-04 21:31:14

阅读数:31

评论数:0

蒙特卡洛方法(Monte-Carlo Simulation)

目录   布封投针问题(Buffon's needle problem) 蒙特卡洛方法(Monte-Carlo Simulation) 估算PI 估计不规则图形的面积 随机抛点 采样估计 样本采集 拒绝采样(reject sample) 封投针问题(Buffon's needl...

2018-09-01 17:29:22

阅读数:163

评论数:0

VMware 中配置Ubuntu网络

每个人所遇的情况不同,可能设置的方法也各有不同。本文只针对自己所遇到的问题,而采取的办法。感谢沈博的指导! 首先在VMware中安装ubuntu,只需正常参照网上的安装方法即可。 安装完成后,配置网络的方法: 1、打开终端,修改profile文件。 sudo vi /etc/prof...

2018-08-23 10:28:08

阅读数:64

评论数:0

奇异值分解(SVD)小结

目录 阵的简单理解 矩阵作用于向量 用矩阵的表达一个实体 特征值和特征向量 奇异值分解 Hermitian矩阵 共轭转置 酉矩阵 谈谈《数学之美》对SVD的理解 阵的简单理解 矩阵从我的理解来看,可以从两个角度来看。一个是矩阵是作用于向量,一个是矩阵表达一个实体。 矩阵作用...

2018-08-15 16:06:33

阅读数:90

评论数:0

最大熵模型

本篇博客只是最近两天看最大熵模型的一个理解和简单总结,只为了阐述清楚最大熵模型,不涉及公式推导。为了怕很快忘记,特意综述一下,如有不正确之处欢迎指正。 最大熵原理 熵:某种意义上说,概率是度量随机事件的确定性,熵是度量随机事件的不确定性。对于随机变量的概率分布来说,随机变量的分布越均匀...

2018-08-09 16:39:32

阅读数:95

评论数:0

隐马尔科夫模型前向后向算法

本文是自己学习隐马尔科夫模型的一个总结,为了自己以后方便查阅,也算作是李航老师的《统计学习方法》的一个总结,若有疑问,欢迎讨论。推荐阅读知乎上Yang Eninala写的《如何用简单易懂的例子解释隐马尔可夫模型?》,写的非常好。我会联系两者,来作为自己的一篇学习笔记。隐马尔可夫模型: 隐马尔可夫模...

2017-09-13 12:09:56

阅读数:821

评论数:0

一文总结条件熵、交叉熵、相对熵、互信息

条件熵:H(Y|X)表示在已知随机变量X的条件下,随机变量Y的不确定性,H(Y|X)定义为:举个例子:有一堆西瓜,已知这堆西瓜的色泽,以及每种色泽对应好瓜和坏瓜的个数,如下所示,设X表示色泽,Y表示好瓜或者坏瓜。则:这个例子就是计算条件熵的一个过程,现在证明条件熵公式:有很多书上的条件熵是这么定义...

2017-09-07 22:13:40

阅读数:1877

评论数:0

彻底理解样本方差为何除以n-1

设样本均值为,样本方差为,总体均值为,总体方差为,那么样本方差有如下公式:    很多人可能都会有疑问,为什么要除以n-1,而不是n,但是翻阅资料,发现很多都是交代到,如果除以n,对样本方差的估计不是无偏估计,比总体方差要小,要想是无偏估计就要调小分母,所以除以n-1,那么问题来了,为什么不是除以...

2017-09-06 00:10:35

阅读数:63168

评论数:21

如何理解用信息熵来表示最短的平均编码长度

之前弄明白了信息熵是什么,由于信息熵来源于信息论,要怎么才能跟编码联系起来呢?这个问题当时没有想明白,今天查了一下资料,理解了一下,做笔记整理一下,如有错误欢迎指正。如果信息熵不明白的请看这里:http://blog.csdn.net/hearthougan/article/details/761...

2017-09-01 23:27:31

阅读数:649

评论数:1

提示
确定要删除当前文章?
取消 删除