《机器学习实战》学习笔记(4)—— Logistic 回归

1 Logistic 回归算法描述 工作原理: 为了实现 Logistic 回归分类器,可以在每个特征上都乘以一个回归系数,然后把所有结果的值相加,将这个总和带入 Sigmoid 函数中,进而得到一个范围在 0-1 之间的数值。任何大于0.5的数据被分入1类别,任何小于0.5的数据被...

2017-09-26 19:56:59

阅读数:258

评论数:0

《机器学习实战》学习笔记(3)—— 朴素贝叶斯

1 朴素贝叶斯算法描述 工作原理: 对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。 2 计算概率的伪代码计算每个类别中的文档数目: 对每篇训练文档: 对每个类别: If 词条出现在文档中: ...

2017-09-26 19:07:30

阅读数:1092

评论数:0

《机器学习实战》学习笔记(2)—— 使用ID3算法构造决策树

1 决策树算法概述 工作原理: 得到原始数据集,然后基于最好的属性值划分数据集,由于特征值可能多余两个,因此可能存在大于两个分支的数据集划分。第一次划分后,数据将被向下传递到树分支的下一个节点,在这个节点上,我们可以再次划分数据。 递归结束的条件: 程序遍历完所有...

2017-09-26 15:32:36

阅读数:848

评论数:0

《机器学习实战》学习笔记(1)——k-近邻算法

1 k-近邻算法概述k-近邻算法,采用测量不同特征值之间的距离方法进行分类。 工作原理: 存在一个样本数据集,也成为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中的每一数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然...

2017-09-26 13:50:48

阅读数:437

评论数:0

windows 下 Graphviz 安装及入门教程

下载安装、配置环境变量intallwindows版本下载地址:http://www.graphviz.org/Download_windows.php双击msi文件,然后一直next(记住安装路径,后面配置环境变量会用到路径信息),安装完成之后,会在windows开始菜单创建快捷信息,默认快捷方式...

2017-09-21 15:14:17

阅读数:1360

评论数:0

数据预处理(2)—— One-hot coding 独热编码#分别使用 pandans.dummies 和 sklearn.feature_extraction.DictVectorizer 进行处理

离散 feature 的 encoding 分为两种情况:1、离散 feature 的取值之间没有大小的意义,比如color:[red,blue],那么就使用 one-hot encoding2、离散 feature 的取值有大小的意义,比如size:[X,XL,XXL],那么就使用数值的映射{X...

2017-09-21 13:57:38

阅读数:1164

评论数:0

数据预处理(1)——标准化(Standardization)与归一化(Normalization)

In [19]: import numpy as npimport pandas as pdfrom pandas import Series, DataFramenp.set_printoptions(precision=4)×…In [20]:xfrom sklearn import prep...

2017-09-21 10:56:20

阅读数:1903

评论数:0

Scikit-Learn 学习 —— kNN使用

sklearn内置数据集数据是机器学习的关键,在机器学习工作中我们需要花费大量的时间来采集和整理数据,合理且科学的数据是得到良好机器学习效果的关键。一般而言,一个分类问题的机器学习过程需要用到四块数据内容,分别是: 训练数据,一般用train来表示 训练数据的分类属性,一般用target来表示 测...

2017-09-20 16:13:39

阅读数:597

评论数:0

利用Python进行数据分析(3)—— Numpy Basic(3)

Data processing using arraysimport numpy as np from matplotlib.pyplot import imshow, title import matplotlib.pyplot as pltnp.set_printoptions(precisi...

2017-09-13 18:16:24

阅读数:394

评论数:0

机器学习系统设计(1)——第一个机器学习应用

import scipy as sp import matplotlib.pyplot as plt''' precision 浮点数输出精度位数(默认值8位) suppress 是否 禁止 使用 科学记数法(默认为False)打印小浮点值 ''' sp.set_printoptions(prec...

2017-09-02 18:03:50

阅读数:3314

评论数:0

利用Python进行数据分析(2)—— Numpy Basic(2)

Boolean indexingnames = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe']) data = np.random.randn(7, 4) print(names) print(data)# 对 names ...

2017-08-09 21:32:13

阅读数:579

评论数:2

利用Python进行数据分析(1)—— Numpy Basic(1)

Jupyter Notebook ViewerThe NumPy ndarray: a multidimensional array objectimport numpy as np''' precision 浮点数输出精度位数(默认值8位) suppress 是否 禁止 使用 科学记数法(默认为...

2017-08-08 01:32:55

阅读数:439

评论数:0

numpy基础——matrix.transpose() 和 matrix.getA()

numpy.matrix.getAmatrix.getA()[source]返回一个数组对象Return self as an ndarray object.Equivalent to np.asarray(self).Parameters: None Returns: ret : nd...

2017-08-03 18:36:24

阅读数:736

评论数:0

matplotlib基础——matplotlib.pyplot.scatter

matplotlib.pyplot.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, edg...

2017-07-21 22:47:06

阅读数:2806

评论数:0

matplotlib基础——令画图时显示中文的方法

当前代码# -*- coding:utf-8 -*-import matplotlib.pyplot as pltdecisionNode = dict(boxstyle="sawtooth", fc="0.8") leafNode = dict(boxst...

2017-07-21 14:38:35

阅读数:415

评论数:0

matplotlib基础——add_subplot()

add_subplot(*args, **kwargs)Add a subplot. Examples:fig.add_subplot(111)# equivalent but more general fig.add_subplot(1,1,1)# add subplot with red ba...

2017-07-20 13:39:27

阅读数:2469

评论数:0

matplotlib基础——pyplot.figure()

matplotlib.pyplot.figure(num=None, figsize=None, dpi=None, facecolor=None, edgecolor=None, frameon=True, FigureClass=<class 'matplotlib.figure.Fig...

2017-07-20 13:36:05

阅读数:3644

评论数:0

numpy基础——关于 ndarray 的一些尝试

In [1]: import numpy as npIn [3]: a_Mat = np.array([1,1],[1,1],[1,1]) --------------------------------------------------------------------------- Val...

2017-07-20 13:07:58

阅读数:251

评论数:0

numpy基础——numpy.sum

numpy.sumnumpy.sum(a, axis=None, dtype=None, out=None, keepdims=Parameters:a : array_like Elements to sum.axis : None or int or tuple of ints, optio...

2017-07-20 01:35:51

阅读数:728

评论数:0

numpy基础——numpy.tile

numpy.tilenumpy.tile(A, reps)Construct an array by repeating A the number of times given by reps.构造一个数组,通过重复数组 A,重复的次数由 reps 给出。If reps has length d,...

2017-07-20 01:20:24

阅读数:234

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭