自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

翻译 python 实现 k-means均值聚类算法

  # K-Means Clustering # Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # Importing the dataset ...

2018-09-29 11:52:16

阅读数 247

评论数 0

翻译 python实现决策树

# -*- coding: utf-8 -*- """ Created on Thu Sep 27 10:40:47 2018 @author: Administrator """ # d...

2018-09-27 12:19:19

阅读数 184

评论数 0

转载 逻辑回归的概念、原理相关

什么是逻辑回归? 线性回归能够对连续值进行预测,如根据面积对房价进行预测。而在现实生活中,我们还有常见的另一类问题:分类问题。最简单的是二分类问题,即是与否的问题,如得病与否,交易是否合理,能否发放贷款,邮件是否垃圾邮件等。 逻辑回归其实是一个分类算法而不是回归算法。通常是利用已知的自变量来预...

2018-09-27 11:49:13

阅读数 226

评论数 0

转载 formart()函数

新增了一种格式化字符串的函数 str.format()   Python2.6 开始,新增了一种格式化字符串的函数 str.format(),它增强了字符串格式化的功能。 基本语法是通过 {} 和 : 来代替以前的 % 。 format 函数可以接受不限个参数,位置可以不按顺序。   ...

2018-09-27 10:37:29

阅读数 1080

评论数 0

翻译 response_demo视图返回值详解

return的信息只能处理 ,元组,字符串,和非Response对象 如果是字典,列表,可以得自定义Response这个类,就可以用了。 from flask import Flask,Response,jsonify import json app = Flask(__name__) ...

2018-09-27 10:37:17

阅读数 58

评论数 0

转载 Dummy Coding虚拟编码

虚拟编码为不同的估计模型提供了一种使用分类变量的方法,比如线性回归模型。当自变量中存在无序多分类的变量,比如血型,分为A、B、O、AB,因为它们之间不存在等级关系,所以在引入回归时,不能直接用1、2、3、4来表示,需要将血型转化为哑变量,并且要设置一个参照。虚拟编码使用0或1来表达所有类别的必要信...

2018-09-26 11:41:27

阅读数 431

评论数 0

翻译 机器学习A-Z 数据预处理

什么是标准库? 标准库相当于是个工具包,里面包含了很多编写好的工具。如果我们想用某种方法达到某种目的,并且已经有标准库的话,那直接用标准库里面的工具,直接传递相对应的参数进去,就可快速实现。这也是写代码比较快速的方法。 导入标准库 在整个机器学习的过程中有很多标准库,但有3个标准库几乎每次都...

2018-09-26 11:06:17

阅读数 188

评论数 0

转载 决策树相关原理、概念

什么是决策树 机器学习中,决策树是一个预测模型;他代表的是对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应从根节点到该叶节点所经历的路径所表示的对象的值。决策树仅有单一输出,若欲有复数输出,可以建立独立的决策树以处理不同输出...

2018-09-21 11:51:15

阅读数 417

评论数 0

转载 AI产品经理相关概念

转的文章 先说一下,你阅读本文可以得到什么。你能得到AI的理论知识框架;你能学习到如何成为一个AI产品经理并且了解到AI产品经理如何在工作中发挥作用,以及AI产品经理需要从哪些方面锻炼能力。最重要的是,通过本文,一切都特别快(手打滑稽)。 PS:目前只针对弱人工智能(我喜欢简称,此处我们简称为...

2018-09-20 10:50:09

阅读数 597

评论数 0

转载 强化学习方法汇总

本文转自莫烦大佬 了解强化学习中常用到的几种方法,以及他们的区别, 对我们根据特定问题选择方法时很有帮助. 强化学习是一个大家族, 发展历史也不短, 具有很多种不同方法. 比如说比较知名的控制方法Q learning, Policy Gradients, 还有基于对环境的理解的 model-ba...

2018-09-19 18:00:56

阅读数 752

评论数 0

转载 强化学习的相关内容

什么是强化学习 强化学习是机器学习的一个重要分支,是多学科多领域交叉的一个产物,它的本质是解决 decision making 问题,即自动进行决策,并且可以做连续决策。 强化学习的原理 agent,环境状态,行动,奖励, 强化学习的目标就是获得最多的累计奖励。 让我们以小孩学习走路来做个...

2018-09-19 17:05:02

阅读数 36

评论数 0

转载 人工智能,机器学习与深度学习,到底是什么关系

一、人工智能 人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,...

2018-09-19 12:09:33

阅读数 953

评论数 0

转载 什么是批标准化 (Batch Normalization)

为什么要数据标准化 (1)具有统一规格的数据, 能让机器学习更容易学习到数据之中的规律. (2)也是优化神经网络的一种方法   什么是批标准化 (Batch Normalization) Batch Normalization, 批标准化, 和普通的数据标准化类似, 是将分散的数据统...

2018-09-19 11:26:00

阅读数 1365

评论数 0

原创 模型、参数量、训练样本的之间的数量关系

没有答案   之前听说,样本至少是参数量的10倍 但跟模型是否有关系,只是猜想 进群qq群  210709131   讨论此问题  

2018-09-19 10:48:02

阅读数 1489

评论数 0

转载 处理不均衡数据

一、什么是数据不平衡 在学术研究与教学中,很多算法都有一个基本假设,那就是数据分布是均匀的。当我们把这些算法直接应用于实际数据时,大多数情况下都无法取得理想的结果。因为实际数据往往分布得很不均匀,都会存在“长尾现象”,也就是所谓的“二八原理”。下图是新浪微博交互分布情况: 可以看到大部分微博的...

2018-09-18 18:48:55

阅读数 175

评论数 0

转载 加速神经网络的训练

为什么要加速神经网络 数据量太大,学习效率太慢   加速神经网络的方法 1、Stochastic Gradient Descent (SGD)随机梯度下降 批量梯度下降法(Batch Gradient Descent,简称BGD)是梯度下降法最原始的形式,它的具体思路是在更新每一参数时都...

2018-09-18 18:25:40

阅读数 1401

评论数 0

转载 Overfitting-过拟合 欠拟合(undefittingr)

什么是过拟合 过拟合:我们通过训练集训练的模型对于训练样本的的拟合程度十分高,就会放大一些不必要的特征,再对测试集进行测试时,就容易造成测试精度很低,也就是模型的泛化能力很弱,这就是过拟合。   怎么解决过拟合 对应导致过拟合发生的几种条件,我们可以想办法来避免过拟合。 (1) 假设过于...

2018-09-18 18:14:36

阅读数 28

评论数 0

转载 机器学习(深度学习)通用工作流程

1. 定义问题并装载数据集(Defining the problem and assembling a dataset) 首先,你必须定义你手头的问题: 输入数据是什么?你希望预测什么?只有在能够获得训练数据的情况下你才能进行预测:举个例子,如果你同时又电影的影评和对应的情感注释,你只能从中学习...

2018-09-18 14:37:43

阅读数 266

评论数 0

转载 激励函数

什么是激励函数?激励函数作用? 激励函数也成激活函数。不使用激励函数的话,神经网络的每层都只是做线性变换,多层输入叠加后也还是线性变换。因为线性模型的表达能力不够,激励函数可以引入非线性因素   常见的激励函数?   如何选择激励函数? 1.可以创造自己的激励函数来处理自己的问题,...

2018-09-18 12:20:08

阅读数 242

评论数 0

转载 怎样区分好用的特征?

什么是数据的特征? 比如区分金毛和吉娃娃,他们都是狗狗,他们有的特征为:身高、耳朵大小、毛素、体重大小等等,这些定性的描述就是特征   为什么区分好用的特征?   机器在学习过程中,需要对数据维度降维, (1)提高机器学习速度,较少过拟合 (2)使模型泛化能力更强 (3)增强对特征...

2018-09-18 12:06:14

阅读数 51

评论数 0

提示
确定要删除当前文章?
取消 删除