一、算法简介
K-means算法是一种常见的无监督学习聚类算法,其基本思想是将n个样本划分为k个簇,每个簇内的样本之间的相似度要尽可能的大,而不同簇之间的相似度要尽可能的小,通过最小化各个簇内点与该簇中心点的距离和来实现。
二、具体算法流程
Kmeans:
1. 初始化: 随机选取k个点作为簇中心;
2. 计算距离: 根据选取的距离度量方式(通常为欧氏距离)计算每个样本到k个中心的距离;
3. 分配样本点: 将每个样本点划分为距离最近的簇;
K-means是一种常用的无监督聚类算法,目标是最小化簇内点与簇中心的距离和。它涉及随机初始化簇中心、计算样本点距离、分配样本和更新簇中心等步骤。然而,K-means对初始点敏感且可能陷入局部最优。K-means++通过概率选择质心以改进初始化,降低局部最优影响。文章还指出了K-means算法处理非凸簇、数据不平衡和异常点时的局限性。
K-means算法是一种常见的无监督学习聚类算法,其基本思想是将n个样本划分为k个簇,每个簇内的样本之间的相似度要尽可能的大,而不同簇之间的相似度要尽可能的小,通过最小化各个簇内点与该簇中心点的距离和来实现。
Kmeans:
1. 初始化: 随机选取k个点作为簇中心;
2. 计算距离: 根据选取的距离度量方式(通常为欧氏距离)计算每个样本到k个中心的距离;
3. 分配样本点: 将每个样本点划分为距离最近的簇;

被折叠的 条评论
为什么被折叠?