Cursor配置python解释器方法

目录

一、直接下载python扩展

二、使用powershell配置版

问题:直接在终端使用conda命令不能执行

1.配置环境变量

2.修改脚本执行策略

3.验证修改有效性

三、附加内容

1.测试代码

2.预训练权重文件

3.一些数据集


一、直接下载python扩展

首先在应用拓展里面下载python扩展

然后右下角选择解释器

然后无论是使用脚本运行还是编译器运行都可以了!

在使用此方法之前我是通过Cursor内的power shell进行配置的,中间报了一些错误,我把解决过程放在第二章节内,有兴趣的同学可以看看。

二、使用powershell配置版

问题:直接在终端使用conda命令不能执行

1.配置环境变量

首先需要把conda环境配置到环境变量Path内:

(这里写你自己conda环境存放的地址,这里地址只是做一个演示)

D:\miniconda3\Scripts

D:\miniconda3\condabin

此时可能会报错:

无法加载文件 C:\Users\Administrator\Documents\WindowsPowerShell\profile.ps1,因为在此系统上禁止运行脚本。有关详细信息,请参阅 ht tps:/go.microsoft.com/fwlink/?LinkID=135170 中的 about_Execution_Policies。

那我们就需要修改一下系统设置:

2.修改脚本执行策略

还是在powershell终端,输入以下命令查看当前的执行策略:

Get-ExecutionPolicy

默认情况下,可能显示 Restricted

输入以下命令来允许执行本地脚本:

Set-ExecutionPolicy RemoteSigned -Scope CurrentUser

这个命令会将执行策略设置为 RemoteSigned,即允许本地脚本运行,但会要求来自互联网的脚本必须有签名。

3.验证修改有效性

关闭 PowerShell 窗口并重新打开它,执行以下命令来查看执行策略是否已成功更改:

Get-ExecutionPolicy

然后执行:

conda init
conda activate yolotest

Conda 环境应该会被成功激活。

后记:此时运行python文件只能通过终端执行,cursor编译器还是不能直接点击运行按钮运行程序,所以直接省事选择上面下载python扩展即可!!!

三、附加内容

1.测试代码

from ultralytics import YOLO
from PIL import Image
import cv2
import os
import glob


def predict_image(image_path, model_path='ultralytics/premodels/yolov8m.pt', output_dir='./output'):
    """
    使用 YOLOv8 模型对单张图像进行预测

    参数:
        image_path (str): 输入图像的路径
        model_path (str): 模型权重文件的路径
        output_dir (str): 输出结果的目录
    """
    # 确保输出目录存在
    os.makedirs(output_dir, exist_ok=True)

    # 加载预训练模型
    model = YOLO(model_path)

    # 预测图像
    results = model(image_path)

    # 获取预测结果
    for i, result in enumerate(results):
        # 获取图像文件名
        image_filename = os.path.basename(image_path)
        name, ext = os.path.splitext(image_filename)

        # 保存带标注的图像
        output_path = os.path.join(output_dir, f"{name}_pred{ext}")
        annotated_frame = result.plot()
        cv2.imwrite(output_path, cv2.cvtColor(annotated_frame, cv2.COLOR_RGB2BGR))
        print(f"预测结果已保存至: {output_path}")

        # 打印检测到的对象
        boxes = result.boxes
        print(f"在图像中检测到 {len(boxes)} 个对象:")
        for box in boxes:
            class_id = int(box.cls)
            conf = float(box.conf)
            class_name = model.names[class_id]
            print(f"- {class_name} (置信度: {conf:.2f})")


def predict_images(input_dir, model_path='ultralytics/premodels/yolov8m.pt', output_dir='./output'):
    """
    使用 YOLOv8 模型对文件夹中的所有图像进行预测

    参数:
        input_dir (str): 输入图像文件夹的路径
        model_path (str): 模型权重文件的路径
        output_dir (str): 输出结果的目录
    """
    # 支持的图像文件扩展名
    image_extensions = ['*.jpg', '*.jpeg', '*.png', '*.bmp']

    # 获取所有图像文件的路径
    image_paths = []
    for ext in image_extensions:
        image_paths.extend(glob.glob(os.path.join(input_dir, ext)))

    if not image_paths:
        print(f"在 {input_dir} 中未找到图像文件!")
        return

    # 处理每个图像
    for image_path in image_paths:
        try:
            print(f"\n正在处理: {image_path}")
            predict_image(image_path, model_path, output_dir)
        except Exception as e:
            print(f"处理图像 {image_path} 时出错: {str(e)}")


if __name__ == "__main__":
    # 示例:预测单张图像
    # image_path = "ultralytics/assets/bus.jpg"  # 替换为你的图像路径
    # predict_image(image_path)

    # 示例:预测文件夹中的所有图像
    input_directory = "ultralytics/assets"  # 替换为你的图像文件夹路径
    predict_images(input_directory)

2.预训练权重文件

探索Ultralytics YOLOv8 -Ultralytics YOLO 文档

yolo项目下载地址:

https://github.com/ultralytics/ultralytics

3.一些数据集

  • COCO128:

Coco128 Dataset and Pre-Trained Model by Slava

  • DOTA Aerial Image

https://universe.roboflow.com/felipe-coradesque-6gmum/dota-aerial-images/dataset/3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值