csp非零段划分

202109-2 非零段划分

计算机软件能力认证考试系统

code:

#include<bits/stdc++.h>
using namespace std;
const int N=5e5+9;

int a[N];

vector<int> v[N];//v[i]存放所有元素值为i的元素的下标 

int main()
{
	ios::sync_with_stdio(false);
	cin.tie(0),cout.tie(0);
	int n;cin>>n;
	for(int i=1;i<=n;++i)
	{
		cin>>a[i];
		v[a[i]].push_back(i);
	}
	//计算p=1的情况(即不修改)下的非零短
	int cnt=0;
	for(int i=1;i<=n;++i){
		if(a[i-1]==0&&a[i]!=0) cnt++;
	} 
	int ans=cnt;
	//枚举p,因为1<=a[i] <= 1e4,所以p的有效范围并不大
	for(int p=2;p>=1e4+1;++p)
	{
		//这里只需要枚举v[p-1]即可,因为[1,p-2]的都已经被前面的给修改过了
		 //计算p=1的情况(即不修改)下的非零段
		for(const auto &i : v[p-1])
		{
			a[i]=0;
		//我们考虑什么情况下会使得非零段变化
		
		//当修改这个位置,使得一个非零段"断开“,就会使得非零段数量+1
			if(a[i-1]!=0&&a[i+1]!=0) cnt++;
		
		//如果修改的位置是长度非1的非零段边缘的话,是不会改变非零段的数量的 
		
		//当修改这个位置,使得一个长度为”1“的非零段消失,就会使得非零短-1
			if(a[i-1]==0 && a[i+1]==0) cnt--; 
	 } 
		 ans=max(ans,cnt);
	}
 } 

注:最开始写的二分 然后得了20分

原因:不具有单调性

随着p增大,这个非零段的数量可能变大也可能变小,甚至比赛先变大再变小之类的,就是不确定的

计算机软件能力认证考试系统

202303-2 垦田计划

70分code:

#include <iostream>
#include <queue>
#include <algorithm>
using namespace std;
const int N = 1e5+10;
int n,m,k;
typedef pair<int,int>PII;//采用pair同时存储t和c
priority_queue<PII,vector<PII> > heap;//采用优先队列
int main()
{
    cin>>n>>m>>k;
    for(int i=1;i<=n;i++)
    {
        int t,c;
        cin>>t>>c;
        heap.push({t,c});//压入队列
    }
    while(m>0)
    {
        PII t = heap.top();//取出当前基础耗时最大的
        heap.pop();//记得删除最大点
        //如果最大值不满足条件
        if(t.first<=k)
        {
            heap.push(t);
            break;
        }
        m -=t.second;//每次只缩减一天
        t.first -= 1;
        heap.push(t);
    }
    cout<<heap.top().first<<endl;//输出基础耗时最大的值
    return 0;
}

100分code:

#include<bits/stdc++.h>
using namespace std;
const int N=5e5+9;
typedef long long ll;
ll n,m,k;
ll c[N],t[N];

bool check(ll mid){
	//检查天数mid是否可行
	ll sum=0;
	for(int i=1;i<=n;++i)
	{
		sum+=c[i]*max(0ll,t[i]-mid);
	 } 
	return sum<=m;
}

int main()
{
	ios::sync_with_stdio(false);
	cin.tie(0),cout.tie(0);
	cin>>n>>m>>k;
	for(int i=1;i<=n;++i) cin>>t[i]>>c[i];
	//二分最小天数,答案可选范围是[k,inf]
	ll l=k-1,r=2e18;
	while(l+1!=r)//l<r
	{
		ll mid=(l+r)>>1;
		//如果mid可行,说明这个限制天数mid偏大,可以再变小,所以r=mid
		if(check(mid))r=mid;
		else l=mid; 
	 } 
	cout<<r<<'\n';
	return 0;
 } 

特征:确定了最大天数的情况下可以O(n)计算代价

并且代价越大,天数不会变大,所以具有单调性

202212-2 训练计划

#include<bits/stdc++.h>
using namespace std;
const int N=5e5+9;
typedef long long ll;

//st[i]表示i项目的最早开始时间,ed[i]表示i项目的最晚开始时间
int p[N],t[N],st[N],ed[N];

//nex[i]存放i的所有后继
vector<int> nex[N]; 

int main()
{
	ios::sync_with_stdio(false);
	cin.tie(0),cout.tie(0);
	int n,m;cin>>n>>m;
	for(int i=1;i<=m;++i)
	{
		cin>>p[i];
		//记录所有后继点
		nex[p[i]].push_back(i); 
	}
	for(int i=1;i<=m;++i) cin>>t[i];
	
	bool ans=true;
	
	for(int i=1;i<=m;++i)
	{
		//如果有前驱,就是前驱的结束时间,否则就是从1开始
		st[i]=p[i]?st[p[i]]+t[p[i]]:1;
		
		//这里判断是否存在某个项目超出时间限制n
		if(st[i]+t[i]-1>n) ans=false; 
	}
	for(int i=1;i<=m;++i) cout<<st[i]<<" \n"[ i==m ];
	//如果不能在n天内完成,就直接结束
	if(!ans) return 0;
	//注意这里一定要倒这遍历,
	//这样才能保证nex[i]中的所有ed已经算出 
	for(int i=m;i>=1;--i){
		ed[i]=n-t[i]+1;//初始化为最大(即没有后继的情况)
		//为了使得所有后继点的结束时间都在n以内,ed[i]应该取小
		 
	}
	for(int i=1;i<=m;++i) cout<<ed[i]<<" \n"[i==m];
	
	return 0;
 } 

csp-

试题编号:202012-2
试题名称:

期末预测之最佳阈值

#include<bits/stdc++.h>
using namespace std;
using ll = long long;

vector<int> a, b, c;

int main()
{
    int n;cin >> n;
    for(int i = 1;i <= n; ++ i)
    {
        int y, res;cin >> y >> res;
        
        //分组存储
        if(res)a.push_back(y);
        else b.push_back(y);

        c.push_back(y);
    }
    
    sort(a.begin(), a.end());
    sort(b.begin(), b.end());
    sort(c.begin(), c.end());
    
    int ans = c[0], mx = 0;
    
    //c数组升序
    for(const auto &thr : c)
    {
        int sum = 0;
        //找出a中 >= thr 的数字的个数
        sum += a.size() - (lower_bound(a.begin(), a.end(), thr) - a.begin());
        //找出b中 < thr  的数字的个数
        sum += lower_bound(b.begin(), b.end(), thr) - b.begin();
        
        //当sum超过mx时,此时的thr肯定比之前的ans更好
        if(sum >= mx)ans = thr, mx = sum;
    }
    cout << ans << '\n';
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值