前馈神经网络与反向传播算法(推导过程)

转自 https://blog.csdn.net/u010089444/article/details/52555567

1. 符号说明

  nlnl :表示网络的层数,第一层为输入层 
 slsl :表示第l层神经元个数 
  f(·) :表示神经元的激活函数 
  W(l)Rsl+1×slW(l)∈Rsl+1×sl:表示第l层到第l+1层的权重矩阵 
  b(l)Rsl+1b(l)∈Rsl+1:表示第l层到第l+1层的偏置 
  z(l)Rslz(l)∈Rsl :表示第l层的输入,其中zi(l)zi(l)为第l层第i个神经元的输入 
  a(l)Rsla(l)∈Rsl :表示第l层的输出,其中ai(l)ai(l)为第l层第i个神经元d的输出

2. 向前传播

下图直观解释了层神经网络模型向前传播的一个例子,圆圈表示神经网络的输入,“+1”的圆圈被称为偏置节点。神经网络最左边的一层叫做输入层,最右的一层叫做输出层。中间所有节点组成的一层叫做隐藏层。 
这里写图片描述

每个神经元的表达式如下: 
这里写图片描述

前向传播的步骤如下: 
z(l)=W(l1)a(l1)+b(l1)a(l)=f(z(l))z(l)=W(l1)f(z(l1))+b(l1)z(l)=W(l−1)a(l−1)+b(l−1)a(l)=f(z(l))}⇒z(l)=W(l−1)f(z(l−1))+b(l−1)

3. 反向传播算法推导过程

(1)目标函数

给定一个包含m个样本的训练集,目标函数为:

J(W,b)=1mmi=1J(W,b;x(i),y(i))+λ2W22J(W,b)=1m∑i=1mJ(W,b;x(i),y(i))+λ2∥W∥22

 =1mmi=1(12h(x(i))y(i))22)+λ2nl1l=1sli=1sl+1j=1(Wji(l))2 =1m∑i=1m(12∥h(x(i))−y(i))∥22)+λ2∑l=1nl−1∑i=1sl∑j=1sl+1(Wji(l))2

采用梯度下降方法最小化J(W,b), 参数更新方式如下:

Wnew(l)=W(l)αJ(W,b))W(l)Wnew(l)=W(l)−α⋅∂J(W,b))∂W(l)

 =W(l)αmi=1J(W,b;x(i),y(i))W(l)λW =W(l)−α∑i=1m∂J(W,b;x(i),y(i))∂W(l)−λW

bnew(l)=b(l)αJ(W,b))b(l)bnew(l)=b(l)−α⋅∂J(W,b))∂b(l)

   =b(l)αmi=1J(W,b;x(i),y(i))b(l)   =b(l)−α∑i=1m∂J(W,b;x(i),y(i))∂b(l)

因此,参数更新的关键在于计算 J(W,b;x,yW(l)∂J(W,b;x,y)∂W(l)J(W,b;x,yb(l)∂J(W,b;x,y)∂b(l)

(2)计算J(W,b;x,yW(l)∂J(W,b;x,y)∂W(l)

根据链式法则可得:

J(W,b;x,yW(l)=(J(W,b;x,yz(l+1))Tz(l+1)W(l)∂J(W,b;x,y)∂W(l)=(∂J(W,b;x,y)∂z(l+1))T∂z(l+1)∂W(l)

其中,z(l+1)W(l)=[W(l)a(l)+b(l)]W(l)=a(l)∂z(l+1)∂W(l)=∂[W(l)⋅a(l)+b(l)]∂W(l)=a(l)

定义残差为: δ(l)=J(W,b;x,yz(l)δ(l)=∂J(W,b;x,y)∂z(l)

对于输出层(第nlnl层),残差的计算公式如下:(其中,f(z(nl))f(z(nl))是按位计算的向量函数,因此其导数是对角矩阵)

δ(nl)=J(W,b;x,yz(nl)δ(nl)=∂J(W,b;x,y)∂z(nl)

   =12h(x)y)22z(nl)   =∂12∥h(x)−y)∥22∂z(nl)

   =12f(z(nl))y)22z(nl)   =∂12∥f(z(nl))−y)∥22∂z(nl) 
   =(a(nl)y)diag(f(z(nl)))   =(a(nl)−y)⋅diag(f′(z(nl)))

   =(a(nl)y)f(z(nl))   =(a(nl)−y)⊙f′(z(nl))

对于网络其它层,残差可通过如下递推公式计算: 
δ(l)=J(W,b;x,yz(l)δ(l)=∂J(W,b;x,y)∂z(l)

  =a(l)z(l)z(l+1)a(l)J(W,b;x,yz(l+1)  =∂a(l)∂z(l)∂z(l+1)∂a(l)∂J(W,b;x,y)∂z(l+1)

  =f(z(l))z(l)[W(l)a(l)+b(l)]a(l)δ(l+1)  =∂f(z(l))∂z(l)⋅∂[W(l)a(l)+b(l)]∂a(l)⋅δ(l+1) 
  =diag(f(z(l)))(W(l))Tδ(l+1)  =diag(f′(z(l)))⋅(W(l))T⋅δ(l+1) 
  =f(z(l))(W(l))Tδ(l+1)  =f′(z(l))⊙(W(l))Tδ(l+1)

(3)计算J(W,b;x,yb(l)∂J(W,b;x,y)∂b(l)

与(2)计算过程同理

J(W,b;x,yb(l)=z(l+1)b(l)J(W,b;x,yz(l+1)∂J(W,b;x,y)∂b(l)=∂z(l+1)∂b(l)∂J(W,b;x,y)∂z(l+1)

 =[W(l)a(l)+b(l)]b(l)δ(l+1) =∂[W(l)⋅a(l)+b(l)]∂b(l)δ(l+1)

 =δ(l+1) =δ(l+1)

综上所述:

J(W,b;x,yW(l)=(δ(l+1))Ta(l)∂J(W,b;x,y)∂W(l)=(δ(l+1))Ta(l)

J(W,b;x,yb(l)=δ(l+1)∂J(W,b;x,y)∂b(l)=δ(l+1)

反向传播算法的含义是:第l 层的一个神经元的残差是所有与该神经元相连的第l+ 1 层的神经元的残差的权重和,然后在乘上该神经元激活函数的梯度。

4. 反向传播算法流程

借网上一张图,反向传播算法可表示为以下几个步骤:

图片名称

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值