暗夜安全专题

本人程序员一枚,从2012开始专注网络和信息安全领域,欢迎同行朋友交流。联系邮箱hi_perfect@qq.com...

华为面试题:一元多项式的化简 C语言实现源码

编程实现如下功能:对输入的一元多项式,进行同类项合并,并按指数降序排序,输出处理后的一元多项式。
说明:
1.多项式由若干个单项式组成,单项式之间为加、减(+,-)关系。
2.单项式指数字与字母幂的乘积构成的代数式。对一元多项式,字母只有一种。
3.同类项合并指将多项式中指数相同的单项式,系数经过加减求和,合并为一个单项式。按指数降序指多项式中,单项式按指数从大到小顺序
相连。
格式说明
一元多项式输入输出时以字符串形式表示,格式如下
l.单项式之间用单个加减运算符相连,运算符:+,-
2.单项式由系数、字母、指数标识符、指数依次直接相连组成,各部分均不能省略。
    系数:只由若干0到9数字字符组成(系数不等于0,且不以0开头)
    字母:X
    指数标识符:^
    指数:只由若干0到9数字字符组成(指数可等于0,不等于0时不以0开头)
3.其他约定
    输入不为空串,输出若为0则以空串表示
    字符串中除以上字符,不包含空格等其他字符,字符串尾部以’\0’结束
    多项式中第一个单项式前加运算时省略+符号,减运算时有-符号
注意:输入多项式符合上述格式,无需检查;输出多项式格式由考生程序保证
规格
输入多项式满足如下规格,考生程序无需检查:
–0<单项式系数<=1000<>
–0<=单项式指数<=3000<>
–单项式个数不限制,但同类项合并处理后,单项式的系数小于65535。
 
示例
输入:
 "-7X^4+5X^6-3X^3+3X^3+1X^0"
输出:
 "5X^6-7X^4+1X^0"
 
<=单项式指数<=3000<>
<单项式系数<=1000<>

输入:-7X^5+7X^3+1X^2-7X^3+2X^5
输出:-5X^5+1X^2(要求从高次到低次排序)

#include "string.h"
#include "stdio.h"
#include "stdlib.h"
#define MAX_PATH 256

int store[1024] = {0};
int num = 0;
void getStringBeforeString(char *out,char *in,char *subFlag)
{
 char *t = strstr(in,subFlag);
 if(t!=NULL)
 {
  memcpy(out,in,t-in);
 }
 else
 {
  memset(out,0,1);
 }

}

char *getUnit(char *out,char *in,int *pn)
{
 char *position = NULL;
 char tmp1[1024] = {0};
 char tmp2[1024] = {0};
 getStringBeforeString(tmp1,in,"+");
 getStringBeforeString(tmp2,in,"-");
 if (strlen(tmp1)==0 && strlen(tmp2)==0)
 {
  memset(out,0,1);
  return in;
 }
 if (strlen(tmp1)<strlen(tmp2))
 {
  if (strlen(tmp1)!=0)
  {
   memcpy(out,tmp1,strlen(tmp1)+1);
   *pn = 1;//正数
   position = in+(strstr(in,"+")-in)+1;
  }
  else
  {
   memcpy(out,tmp2,strlen(tmp2)+1);
   *pn = 0;//负数
   position = in+(strstr(in,"-")-in)+1;
  }
 }
 else
 {
  if(strlen(tmp2)!=0)
  {
   memcpy(out,tmp2,strlen(tmp2)+1);
   *pn = 0;//负数
   position = in+(strstr(in,"-")-in)+1;
  }
  else
  {
   memcpy(out,tmp1,strlen(tmp1)+1);
   *pn = 1;//正数
   position = in+(strstr(in,"+")-in)+1;
  }
 }
 return position;
}
//准备工作:存入数据,处理数据(矩阵运算:行的元素和列的元素对应积的和),输出
int main()
{
 //输入:
 // "-7X^4+5X^6-3X^3+3X^3+1X^0" 
  //输出:
  //"5X^6-7X^4+1X^0"
 char buffer[1024] = {0};
 char out[1024] = {0};
 gets(buffer);
 int pn = 1,pn_next = 1;//记录正负,1为正数
 char *position = buffer;
 //单独处理第一个
 if (*position=='-')
 {
  pn_next = 0;
  pn = pn_next;
  position = position+1;
 }
 while(true)
 {
  memset(out,0,1024);
  position = getUnit(out,position,&pn_next);
  if (strlen(out)==0)
  {
   //处理最后一组
   char *a = strtok(position,"X^");
   char *b = strtok(NULL,"X^");
   if (pn==1)
   {
    store[atoi(b)] += atoi(a);
   }
   else
   {
    store[atoi(b)] -= atoi(a);
   }
   break;
  }
  char *a = strtok(out,"X^");
  char *b = strtok(NULL,"X^");
  if (pn==1)
  {
   store[atoi(b)] += atoi(a);
  }
  else
  {
   store[atoi(b)] -= atoi(a);
  }
  pn = pn_next;
 }
 int headFlag = 0;
 for (int i=1023;i>=0;i--)
 {
  int t = store[i];
  if (t!=0)
  {
   if (t>0)
   {
    if (headFlag==1)
    {
     printf("+");
    }
   }
   printf("%dX^%d",t,i);
   headFlag = 1;
  }
  
 }
 //store[num++] = atoi(out);
 return 0;
}


 

阅读更多
个人分类: C语言代码
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭