#pandas中的merge和concat类似,但主要是用于两组有key column的数据,
#统一索引的数据. 通常也被用在Database的处理当中.
from __future__ import print_function
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
'''
#print(np.random.randn(1000))
#print(np.arange(1000))
data = pd.Series(np.random.randn(1000),index=np.arange(1000))
# print(data)
data.cumsum()
data.plot()
plt.show()
'''
'''
data = pd.DataFrame(np.random.randn(1000,4),
index = np.arange(1000),
columns = list('ABCD'))
#print(data)
data.cumsum()
data.plot()
plt.show()
'''
data = pd.DataFrame(np.random.randn(1000,4),
index = np.arange(1000),
columns = list('ABCD'))
ax = data.plot.scatter(x='A',y='B',color='DarkBlue',label='Class1')
#然后我们在可以再画一个在同一个ax上面,选择不一样的数据列,不同的 color 和 label
# 将之下这个 data 画在上一个 ax 上面
data.plot.scatter(x='A',y='C',color='LightGreen',label='Class2',ax=ax)
plt.show()
#统一索引的数据. 通常也被用在Database的处理当中.
from __future__ import print_function
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
'''
#print(np.random.randn(1000))
#print(np.arange(1000))
data = pd.Series(np.random.randn(1000),index=np.arange(1000))
# print(data)
data.cumsum()
data.plot()
plt.show()
'''
'''
data = pd.DataFrame(np.random.randn(1000,4),
index = np.arange(1000),
columns = list('ABCD'))
#print(data)
data.cumsum()
data.plot()
plt.show()
'''
data = pd.DataFrame(np.random.randn(1000,4),
index = np.arange(1000),
columns = list('ABCD'))
ax = data.plot.scatter(x='A',y='B',color='DarkBlue',label='Class1')
#然后我们在可以再画一个在同一个ax上面,选择不一样的数据列,不同的 color 和 label
# 将之下这个 data 画在上一个 ax 上面
data.plot.scatter(x='A',y='C',color='LightGreen',label='Class2',ax=ax)
plt.show()