HDU1018(斯特林公式)


Problem Description
In many applications very large integers numbers are required. Some of these applications are using keys for secure transmission of data, encryption, etc. In this problem you are given a number, you have to determine the number of digits in the factorial of the number.
 

Input
Input consists of several lines of integer numbers. The first line contains an integer n, which is the number of cases to be tested, followed by n lines, one integer 1 ≤ n ≤ 10 7 on each line.
 

Output
The output contains the number of digits in the factorial of the integers appearing in the input.
 

Sample Input
  
  
2 10 20
 

Sample Output
  
  
7 19
这个题的意思是:给你一个数,让你求出N!由多少位数构成,比如输出10,它的阶乖是3628800 由7位数构成,这时你要输出7;
解题思路:
1.可以暴力,N的阶乖的位数等于LOG10(N!)=LOG10(1)+.....LOG10(N);
2. Stirling公式:n!与√(2πn) * n^n * e^(-n)的值十分接近
故log10(n!) = log(n!) / log(10) = ( n*log(n) - n + 0.5*log(2*π*n))/log(n);
解法一:
LANGUAGE:C++
CODE:
  1. #include<stdio.h>  
  2. #include<math.h>  
  3. double reback(int n)  
  4. {  
  5.     double cnt=0;  
  6.     for(int i=2;i<=n;i++)  
  7.     {  
  8.         cnt+=log10(i);  
  9.     }  
  10.     return cnt;  
  11. }  
  12.   
  13. int main()  
  14. {  
  15.     int cas,n;  
  16.     scanf("%d",&cas);  
  17.     while(cas--)  
  18.     {  
  19.         scanf("%d",&n);  
  20.         printf("%d\n",(int)reback(n)+1);  
  21.     }  
  22.     return 0;  
  23. }  
#include<stdio.h>
#include<math.h>
double reback(int n)
{
	double cnt=0;
	for(int i=2;i<=n;i++)
	{
		cnt+=log10(i);
	}
	return cnt;
}

int main()
{
	int cas,n;
	scanf("%d",&cas);
	while(cas--)
	{
		scanf("%d",&n);
		printf("%d\n",(int)reback(n)+1);
	}
	return 0;
}

解法二:
LANGUAGE:C++
CODE:
  1. #include <stdio.h>  
  2. #include <math.h>  
  3.   
  4. const double PI = acos(-1.0);  
  5. const double ln_10 = log(10.0);  
  6.   
  7. double reback(int N)  
  8. {  
  9.     return ceil((N*log(double(N))-N+0.5*log(2.0*N*PI))/ln_10);  
  10. }      
  11.   
  12. int main()  
  13. {  
  14.     int cas,n;  
  15.     scanf("%d",&cas);  
  16.     while(cas--)  
  17.     {  
  18.         scanf("%d",&n);  
  19.         if(n<=1)printf("1\n");  
  20.         else printf("%.0lf\n",reback(n));  
  21.     }  
  22.     return 0;  
  23. }  
#include <stdio.h>
#include <math.h>

const double PI = acos(-1.0);
const double ln_10 = log(10.0);

double reback(int N)
{
    return ceil((N*log(double(N))-N+0.5*log(2.0*N*PI))/ln_10);
}    

int main()
{
	int cas,n;
	scanf("%d",&cas);
	while(cas--)
	{
		scanf("%d",&n);
		if(n<=1)printf("1\n");
		else printf("%.0lf\n",reback(n));
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值