数据结构--Dijkstra算法最清楚的讲解

本文详细介绍迪杰斯特拉算法的基本思想与实现过程,并通过实例演示算法如何计算一个节点到其他节点的最短路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径。
它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止

基本思想

  1. 通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算)。

  2. 此外,引进两个集合S和U。S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求出最短路径的顶点(以及该顶点到起点s的距离)。

  3. 初始时,S中只有起点s;U中是除s之外的顶点,并且U中顶点的路径是"起点s到该顶点的路径"。然后,从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。 然后,再从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。 … 重复该操作,直到遍历完所有顶点。

###操作步骤

  1. 初始时,S只包含起点s;U包含除s外的其他顶点,且U中顶点的距离为"起点s到该顶点的距离"[例如,U中顶点v的距离为(s,v)的长度,然后s和v不相邻,则v的距离为∞]。

  2. 从U中选出"距离最短的顶点k",并将顶点k加入到S中;同时,从U中移除顶点k。

  3. 更新U中各个顶点到起点s的距离。之所以更新U中顶点的距离,是由于上一步中确定了k是求出最短路径的顶点,从而可以利用k来更新其它顶点的距离;例如,(s,v)的距离可能大于(s,k)+(k,v)的距离。

  4. 重复步骤(2)和(3),直到遍历完所有顶点。

单纯的看上面的理论可能比较难以理解,下面通过实例来对该算法进行说明。

图解

这里写图片描述

以上图G4为例,来对迪杰斯特拉进行算法演示(以第4个顶点D为起点)。以下B节点中23应为13。

这里写图片描述

初始状态:S是已计算出最短路径的顶点集合,U是未计算除最短路径的顶点的集合!

第1步:将顶点D加入到S中。
此时,S={D(0)}, U={A(∞),B(∞),C(3),E(4),F(∞),G(∞)}。 注:C(3)表示C到起点D的距离是3。

第2步:将顶点C加入到S中。
上一步操作之后,U中顶点C到起点D的距离最短;因此,将C加入到S中,同时更新U中顶点的距离。以顶点F为例,之前F到D的距离为∞;但是将C加入到S之后,F到D的距离为9=(F,C)+(C,D)。
此时,S={D(0),C(3)}, U={A(∞),B(23),E(4),F(9),G(∞)}。

第3步:将顶点E加入到S中。
上一步操作之后,U中顶点E到起点D的距离最短;因此,将E加入到S中,同时更新U中顶点的距离。还是以顶点F为例,之前F到D的距离为9;但是将E加入到S之后,F到D的距离为6=(F,E)+(E,D)。
此时,S={D(0),C(3),E(4)}, U={A(∞),B(23),F(6),G(12)}。

第4步:将顶点F加入到S中。
此时,S={D(0),C(3),E(4),F(6)}, U={A(22),B(13),G(12)}。

第5步:将顶点G加入到S中。
此时,S={D(0),C(3),E(4),F(6),G(12)}, U={A(22),B(13)}。

第6步:将顶点B加入到S中。
此时,S={D(0),C(3),E(4),F(6),G(12),B(13)}, U={A(22)}。

第7步:将顶点A加入到S中。
此时,S={D(0),C(3),E(4),F(6),G(12),B(13),A(22)}。

此时,起点D到各个顶点的最短距离就计算出来了:A(22) B(13) C(3) D(0) E(4) F(6) G(12)。

###代码
邻接矩阵为例,

// 邻接矩阵
typedef struct _graph
{
    char vexs[MAX];       // 顶点集合
    int vexnum;           // 顶点数
    int edgnum;           // 边数
    int matrix[MAX][MAX]; // 邻接矩阵
}Graph, *PGraph;

// 边的结构体
typedef struct _EdgeData
{
    char start; // 边的起点
    char end;   // 边的终点
    int weight; // 边的权重
}EData;

Graph是邻接矩阵对应的结构体。
vexs用于保存顶点,vexnum是顶点数,edgnum是边数;matrix则是用于保存矩阵信息的二维数组。
例如,matrix[i][j]=1,则表示"顶点i(即vexs[i])"和"顶点j(即vexs[j])"是邻接点;matrix[i][j]=0,则表示它们不是邻接点。
EData是邻接矩阵边对应的结构体。

####Dijkstra算法

/*
 * Dijkstra最短路径。
 * 即,统计图(G)中"顶点vs"到其它各个顶点的最短路径。
 *
 * 参数说明:
 *        G -- 图
 *       vs -- 起始顶点(start vertex)。即计算"顶点vs"到其它顶点的最短路径。
 *     prev -- 前驱顶点数组。即,prev[i]的值是"顶点vs"到"顶点i"的最短路径所经历的全部顶点中,位于"顶点i"之前的那个顶点。
 *     dist -- 长度数组。即,dist[i]是"顶点vs"到"顶点i"的最短路径的长度。
 */
void dijkstra(Graph G, int vs, int prev[], int dist[])
{
    int i,j,k;
    int min;
    int tmp;
    int flag[MAX];      // flag[i]=1表示"顶点vs"到"顶点i"的最短路径已成功获取。

    // 初始化
    for (i = 0; i < G.vexnum; i++)
    {
        flag[i] = 0;              // 顶点i的最短路径还没获取到。
        prev[i] = 0;              // 顶点i的前驱顶点为0。
        dist[i] = G.matrix[vs][i];// 顶点i的最短路径为"顶点vs"到"顶点i"的权。
    }

    // 对"顶点vs"自身进行初始化
    flag[vs] = 1;
    dist[vs] = 0;

    // 遍历G.vexnum-1次;每次找出一个顶点的最短路径。
    for (i = 1; i < G.vexnum; i++)
    {
        // 寻找当前最小的路径;
        // 即,在未获取最短路径的顶点中,找到离vs最近的顶点(k)。
        min = INF;
        for (j = 0; j < G.vexnum; j++)
        {
            if (flag[j]==0 && dist[j]<min)
            {
                min = dist[j];
                k = j;
            }
        }
        // 标记"顶点k"为已经获取到最短路径
        flag[k] = 1;

        // 修正当前最短路径和前驱顶点
        // 即,当已经"顶点k的最短路径"之后,更新"未获取最短路径的顶点的最短路径和前驱顶点"。
        for (j = 0; j < G.vexnum; j++)
        {
            tmp = (G.matrix[k][j]==INF ? INF : (min + G.matrix[k][j])); // 防止溢出
            if (flag[j] == 0 && (tmp  < dist[j]) )
            {
                dist[j] = tmp;
                prev[j] = k;
            }
        }
    }

    // 打印dijkstra最短路径的结果
    printf("dijkstra(%c): \n", G.vexs[vs]);
    for (i = 0; i < G.vexnum; i++)
        printf("  shortest(%c, %c)=%d\n", G.vexs[vs], G.vexs[i], dist[i]);
}

参考资料

1, http://www.cnblogs.com/skywang12345/p/3711512.html

<think>好的,我现在需要回答用户关于双向迪杰斯特拉算法的基本概念和原理的问题。首先,我应该回顾一下用户提供的引用资料,看看有哪些相关信息可以利用。 根据引用[2],双向迪杰斯特拉算法是为了减少搜索空间,尤其是在大规模图中,单向算法可能会发散,而双向方法从起点和终点同时搜索,可以更快相遇。引用[4]提到,双向方法不满足三角不等式的情况可能存在,比如实际道路中的非直线距离。引用[5]则解释了传统Dijkstra的核心思想,即每次选距离起点近的点更新其他点,这可能对理解双向版本有帮助。 接下来,我需要组织回答的结构。首先介绍传统Dijkstra算法的基本原理,然后引出双向版本的改进。需要解释双向搜索的工作机制,包括前向和后向的搜索过程,相遇条件,以及路径拼接。同时要提到优势,比如减少搜索空间,提高效率,以及适用的场景和局限性,比如权重不均或负权的问题。 需要确保使用正确的中文术语,比如“优先级队列”或“堆结构”。还要注意用户提到的格式要求,数学表达式用$...$,独立公式用$$...$$,比如相遇时的总距离公式。可能还需要举例说明,如引用[4]中的三角形例子,但要用自己的话描述。 另外,用户要求生成相关问题,我需要根据内容准备相关问题,比如与传统算法的对比、时间复杂度、适用场景、实现难点等。要确保问题相关且有深度。 后检查是否符合所有系统指令,特别是LaTeX格式和引用标注的位置,比如在提到减少搜索空间时引用[2],提到三角不等式例子时引用[4]。确保回答结构清晰,分点明确,帮助用户逐步理解。</think>### 双向迪杰斯特拉算法原理介绍 #### 1. **传统迪杰斯特拉算法回顾** 迪杰斯特拉算法是解决**单源正权图短路径**的经典算法,核心思想是通过**贪心策略**逐步确定起点到各点的短距离[^5]。其步骤如下: - 初始化起点距离为$0$,其他点距离为$\infty$ - 每次选择当前距离小的未访问节点$u$ - 用$u$更新其邻接节点$v$的距离:$dist[v] = \min(dist[v], dist[u] + w(u,v))$ 时间复杂度为: $$O(n^2) \text{(朴素版)} \quad \text{或} \quad O(m \log n) \text{(堆优化版)}$$ #### 2. **双向改进的核心思想** 双向迪杰斯特拉算法**同时从起点和终点发起搜索**,通过两个方向的搜索在中间相遇,显著减少搜索空间[^2][^4]。关键步骤如下: - **前向搜索**:从起点$s$出发,使用传统Dijkstra规则 - **后向搜索**:从终点$t$出发,反向遍历边(需预处理反向图) - **相遇条件**:当两个搜索的已访问节点集合出现交集时终止 - **路径拼接**:找到满足下式的中间节点$u$ $$d(s,u) + d(u,t) = \min\{d(s,x) + d(x,t)\}$$ #### 3. **算法执行示意图** ```plaintext 前向搜索 → ← 后向搜索 起点 s -----→ u ←----- 终点 t ↘ ↗ ↖ ↖ v ←--- w ---→ z ``` 当两搜索在节点$u$相遇时,总路径长度为$d(s,u) + d(u,t)$[^4] #### 4. **性能优势分析** - **搜索空间缩减**:理论时间复杂度降为$O(2 \cdot (n/2)^2) = O(n^2/2)$(理想情况)[^2] - **实际加速效果**:在大规模稀疏图中可提升10-20倍效率 - **内存优化**:双向搜索的优先级队列总规模小于单向搜索 #### 5. **局限性说明** - **权重不均问题**:边权差异过大会导致相遇点偏移,影响效率[^2] - **负权不适用**:与原始Dijkstra算法共享此限制 - **实现复杂度**:需维护两个优先队列和双向距离表[^3] - **终止条件敏感**:过早终止可能错过优路径
评论 47
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值