算子优化相关的文档链接 AutoKernel — AutoKernel 文档https://autokernel-docs-en.readthedocs.io/zh_CN/latest/introduction/introduction.htmlAutoKernel是由OPEN AI LAB提出的高性能算子自动优化工具,可以自动优化调度策略、生成底层优化代码,大幅减少各硬件芯片算子开发成本,提升算子优化效率,让工程师更快实现深度学习算法在各硬件芯片上的高性能部署。...
c++ floor() ceil() round()函数用法 使用floor函数。floor(x)返回的是小于或等于x的最大整数。使用ceil函数。ceil(x)返回的是大于x的最小整数floor()是向负无穷大舍入,floor(-10.5) == -11;ceil()是向正无穷大舍入,ceil(-10.5) == -10fix朝零方向取整,如fix(-1.3)=-1; fix(1.3)=1;floor朝负无穷方向取整,如floor(-1.3)=-2; floor(1.3)=1;ceil朝正无穷方向取整,如ceil(-1.3)=-1; ceil
Feature Selection Mechanism in CNNs for Facial Expression Recognition BMVC2018Feature Selection Mechanism in CNNs for Facial Expression Recognition
FaceNet2ExpNet: Regularizing a Deep Face Recognition Net for Expression Recognition **FaceNet2ExpNet: Regularizing a Deep Face Recognition Net forExpression RecognitionHui Ding , Shaohua Kevin Zhou and Rama Chellappa University ofMaryland, College Park Siemens Healthcare Techno...
20191116日 SqueezeNet&&&DSD(Dense-Sparse-Dense Training) SqueezeNet 发表于ICLR-2017,作者分别来自Berkeley和Stanford,SqueezeNet不是模型压缩技术,而是 “design strategies for CNN architectures with few parameters”SqueezeNet的核心在于Fire module,Fire module 由两层构成,分别是squeeze层+expand层,如下图...
ResNeXt Aggregated Residual Transformations for Deep Neural Networks这是一篇发表在2017CVPR上的论文,介绍了ResNet网络的升级版:ResNeXt。作者提出 ResNeXt 的主要原因在于:传统的要提高模型的准确率,都是加深或加宽网络,但是随着超参数数量的增加(比如channels数,filter size等等),网络设计的难度和计算...
卷积神经网络中的Separable Convolution 卷积神经网络中的Separable Convolution卷积神经网络中的Separable Convolution卷积神经网络在图像处理中的地位已然毋庸置疑。卷积运算具备强大的特征提取能力、相比全连接又消耗更少的参数,应用在图像这样的二维结构数据中有着先天优势。然而受限于目前移动端设备硬件条件,显著降低神经网络的运算量依旧是网络结构优化的目标之一。本文所述的Separable Convolu...
SENet(CVPR2017) 此论文是由Momenta公司所作并发于2017 CVPR,论文中的SENet赢得了ImageNet最后一届(ImageNet 2017)的图像识别冠军。论文的核心点在对CNN中的feature channel(特征通道依赖性)利用和创新。 论文的动机是从特征通道之间的关系入手,希望显式地建模特征通道之间的相互依赖关系。另外,没有引入一个新的空间维度来进行特征通道间的融合,而是采用了一种全新的“特征...
Second-order Temporal Pooling for Action Recognition Cherian A, Gould S. Second-order temporal pooling for action recognition[J]. International Journal of Computer Vision, 2019, 127(4): 340-362.基于视频的动作识别的深度学习模型通常为短视频片段(由几帧组成)生成特征;通过计算这些特性的统计数据,将这些剪辑级...
Collaborative Spatiotemporal Feature Learning for Video Action Recognition Li C, Zhong Q, Xie D, et al. Collaborative Spatiotemporal Feature Learning for Video Action Recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 7872-7...
Temporal-Spatial Mapping for Action Recognition Xiaolin Song, Cuiling Lan, Wenjun Zeng, Fellow, IEEE, Junliang Xing, Member, IEEE, Xiaoyan Sun, SeniorMember, IEEE, and Jingyu Yang, Senior Member, IEEESong X, Lan C, Zeng W, et al. Temporal-Spatia...
数据扩增手段 为了获得更多数据,我们只需要对现有数据集进行微小改动。轻微更改,例如翻转或翻译或轮换。无论如何,我们的神经网络会认为这些是不同的图像。卷积神经网络CNN,对放置在不同方向的对象,也能进行稳健的分类,即具有不变性的属性。更具体地,CNN对于平移,不同视角,尺度大小或光照等(或上述的组合)可以是不变的。这基本上是数据增加的前提。在实际场景中,我们可能会在一组有限的条件下获取图像数据集。但是,我们的...
pyinstaller打包报错RecursionError RecursionError想使用python打包生成exe文件,突然发现在打包过程中会出现:RecursionError: maximum recursion depth exceeded异常,然而百度好久,都在说明一个问题:报错提示超过最大递归深度,解决办法:import syssys.setrecursionlimit(1000000) #例如这里设置为一百万但是打包命令Pyinst...
目标检测知识点及常用网络——RCNN,SPPNET等 物体检测算法常用到的概念下面我们讲解一下在物体检测算法中常用到的几个概念:Bbox,IoU,非极大值抑制。Bounding Box(bbox)bbox是包含物体的最小矩形,该物体应在最小矩形内部,如上图红色框蓝色框和绿色框。物体检测中关于物体位置的信息输出是一组(x,y,w,h)数据,其中x,y代表着bbox的左上角(或者其他固定点,可自定义),对应的w,h表示bbox的宽和高.一组(x,...
ssd目标检测验证 模型可以在这里下载 (亲测可用) https://github.com/grofattila/dji-tello-object-detection-demo#encoding:utf-8import tensorflow as tfimport numpy as np import osfrom matplotlib import pyplot as pltfrom PIL...
pyqt有用的链接以及小tips https://blog.csdn.net/rookie_wei/article/details/81210499https://blog.csdn.net/yourgreatfather/article/details/84635778pyqt使用https://blog.csdn.net/zd0303/article/details/50261481
Python os.walk() 方法 概述os.walk() 方法用于通过在目录树中游走输出在目录中的文件名,向上或者向下。os.walk() 方法是一个简单易用的文件、目录遍历器,可以帮助我们高效的处理文件、目录方面的事情。在Unix,Windows中有效。walk()方法语法格式如下:os.walk(top[, topdown=True[, οnerrοr=None[, followlinks=False]]])参数...
目标检测-Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Faster R-CNN: Towards Real-Time Object Detection with Region Proposal NetworksTPAMI.2016 Ren, Shaoqing,He, Kaiming,Girshick, Ross…物体检测算法常用到的概念下面我们讲解一下在物体检测算法中常用到的几个概念:Bbox,IoU,非极大值抑制。Bounding B...
Deep Covariance Descriptors for Facial Expression Recognition N. Otberdout, A. Kacem, M. Daoudi, L. Ballihi, and S. Berretti, “Deepcovariance descriptors for facial expression recognition,” in BMVC,2018Abstract本文利用协方差矩阵对深度卷积神经网络(DCNN)特征进行编码,用于人脸表情识别。协方差矩阵的...