深度学习-基于PyTorch的神经网络的保存和提取

神经网络存储有两种方式,一种是保存整个网络,包括框架和参数,另一种是保存参数,相应的,提取液包括两种方式,一般建议采用保存/提取参数的方式。

import torch
import matplotlib.pyplot as plt

"""生成随机数据"""
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)  # x轴数据从-1到1,共100个数据,unsqueeze把一维的数据变为2维的数据
y = x.pow(2) + 0.2 * torch.rand(x.size())  # y=x*2,但是还要加上波动

"""保存神经网络"""
def save():
    net1 = torch.nn.Sequential(  # 快速创建神经网络
        torch.nn.Linear(1, 10),
        torch.nn.ReLU(),
        torch.nn.Linear(10, 1)
    )
    optimizer = torch.optim.SGD(net1.parameters(), lr=0.5)  # 使用优化器优化神经网络参数,lr为学习效率,SGD为随机梯度下降法
    loss_func = torch.nn.MSELoss()  # 均方差处理回归问题
    for t in range(1000):  # 循环训练
        prediction = net1(x)  # 输入x,得到预测值
        loss = loss_func(prediction, y)  # 计算损失,预测值和真实值的对比
        optimizer.zero_grad() 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值