题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5001
题目大意:一个人随即从一个点出发,到达邻接点的概率相同,求出走d步都不会到达1~n点的每一项的概率(这里第一次随即取的点是要求的点也算到达过了)
记得去年网的时候最开始直接算到某一个点的概念然后减掉,然后发现样例过不了,才意识到这样会把多次到达的概率重复计算…
f[i][j] 仍然表示i步走到j的概率,但是是对于每个点都求一遍,且对于点x求f[i][j]时一直保证不经过x,然后再算再减就好了
记得网赛的时候过了样例还wa了一发,然后我研究了半个多小时,之后偶然发现居然输出了-0.0000000……那个泪流满面啊……
再做一遍感觉清晰多了orz
#include<iostream>
#include<cstring>
#include<cstdio>
#include<math.h>
#include<stdlib.h>
#include<algorithm>
using namespace std;
int n, m, d;
double f[10010][60];
bool a[60][60];
int deg[60];
double ans[60];
bool comp(int a, int b)
{
return a > b;
}
int main()
{
int t;
scanf("%d", &t);
while (t--)
{
scanf("%d%d%d", &n, &m, &d);
memset(a, 0, sizeof(a));
memset(f, 0, sizeof(f));
memset(deg, 0, sizeof(deg));
for (int i = 1; i <= m; i++)
{
int x, y;
scanf("%d%d", &x, &y);
a[x][y] = 1;
a[y][x] = 1;
deg[x]++;
deg[y]++;
}
for (int i = 1; i <= n; i++)
{
ans[i]=1;
f[0][i] = 1.0 / n;
}
for (int k = 1; k <= n; k++)
{
for (int step = 1; step <= d; step++)
{
for (int i = 1; i <= n; i++)
{
f[step][i] = 0;
for (int j = 1; j <= n; j++)
{
if ((j != k) && (a[j][i] == 1))
{
f[step][i] += (f[step - 1][j] * (1.0 / (deg[j])));
//printf("%d %d %.6lf\n ", i, j, f[step - 1][j] * (1.0 / deg[j]));
//if (f[step][i] > 1.0) f[step][i] = 1.0;
}
}
}
}
double sum = 1;
for(int step = 0; step <= d; step++)
{
ans[k] -= f[step][k];
}
printf("%.10lf\n",fabs(ans[k]));
for (int i = 1; i <= n; i++)
{
f[0][i] = 1.0 / n;
}
}
}
return 0;
}