听雨听风眠
码龄10年
求更新 关注
提问 私信
  • 博客:131,552
    社区:2
    问答:3,118
    134,672
    总访问量
  • 36
    原创
  • 690
    粉丝
  • 14
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
加入CSDN时间: 2015-10-23

个人简介:自动驾驶感知融合 嵌入式linux驱动开发

博客简介:

何高志

查看详细资料
个人成就
  • 获得109次点赞
  • 内容获得105次评论
  • 获得623次收藏
  • 代码片获得253次分享
  • 博客总排名23,657名
  • 原力等级
    原力等级
    3
    原力分
    449
    本月获得
    0
创作历程
  • 1篇
    2025年
  • 5篇
    2024年
  • 4篇
    2022年
  • 11篇
    2021年
  • 1篇
    2020年
  • 6篇
    2019年
  • 23篇
    2016年
成就勋章
TA的专栏
  • 自动驾驶
    4篇
  • linux系统移植与驱动开发
    7篇
  • uboot
  • linux内核
    3篇
  • ARM
    1篇
  • android硬件解析层
  • opencv
    7篇
  • linux系统编程
    4篇
  • 算法
    4篇
  • c语言
    2篇
  • c++
    8篇
  • java
  • 数字图像
  • 工具
    7篇
  • 传感器
    3篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 0

兴趣领域 设置
  • 人工智能
    opencv计算机视觉机器学习深度学习神经网络图像处理
创作活动更多

王者杯·14天创作挑战营·第2期

这是一个以写作博客为目的的创作活动,旨在鼓励码龄大于4年的博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见https://bbs.csdn.net/topics/619735097 2、文章质量分查询:https://www.csdn.net/qc 我们诚挚邀请你们参加为期14天的创作挑战赛!

66人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

spdlog数据采集

循环进行log数据采集,控制单文件大小,控制目录总大小,多线程安全。
原创
发布博客 2025.05.14 ·
204 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

C/C++ 读取配置文件的几种方式

介绍了使用protobuf、json、opencv、gflags 4种c/c++开发中常使用的加载配置文件的方法。
原创
发布博客 2024.04.09 ·
2019 阅读 ·
10 点赞 ·
2 评论 ·
9 收藏

常用运动模型

运动模型常用运动模型:CV、CA、CTRV、CTRV、CTRA、CSAV和CCA/CSAA模型微分多项式模型辛格模型半马尔科夫模型机动目标"当前模型"二维转弯运动模型三维模型比列导引模型恒定速度模型(Constant Velocity, CV)恒定加速度模型(Constant Acceleration, CA)恒定转率和速度模型(Constant Turn Rate and Velocity,CTRV)恒定转率和加速度模型(Constant Turn Rate and
原创
发布博客 2024.04.02 ·
913 阅读 ·
4 点赞 ·
0 评论 ·
8 收藏

经典卡尔曼滤波完整公式推导

卡尔曼滤波公式推导;卡尔曼滤波原理
原创
发布博客 2024.04.02 ·
567 阅读 ·
5 点赞 ·
0 评论 ·
11 收藏

瑞萨8155QNX文件传输

瑞萨8155QNX文件传输
原创
发布博客 2024.04.02 ·
721 阅读 ·
4 点赞 ·
1 评论 ·
8 收藏

Git 多人协作开发

git多人协作开发说明;git 本地分支创建、删除、提交;git 远程分支创建、删除、提交;本地分支和远程分支同步。
原创
发布博客 2024.04.02 ·
1005 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

Opencv将目录下的图片存储为视频

Opencv将目录下的图片存储为视频
原创
发布博客 2022.06.17 ·
446 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Opencv获取指定时间内的视频片段以及帧

Opencv 获取指定时间内的视频片段以及帧
原创
发布博客 2022.06.17 ·
1251 阅读 ·
0 点赞 ·
0 评论 ·
11 收藏

proto_cmake_test

proto_cmake_testProto与CMAKE结合编译源代码工程编译cd buildcmake ..makels message/*在message目录下生成cc和h文件三种CMakelists编写方式第一种cmake_minimum_required(VERSION 2.6) project(proto_cmake_test) add_definitions(-std=c++11) find_package(Protobuf REQUIRED)find_pa
原创
发布博客 2022.03.03 ·
365 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

proto与cmakelists结合进行编译编程

发布资源 2022.03.03 ·
zip

视频合并;将两个视频合并为一个文件,并在视频中打标签

发布资源 2022.03.02 ·
zip

opencv两视频合并

opencv两视频合并
原创
发布博客 2022.03.02 ·
5038 阅读 ·
1 点赞 ·
2 评论 ·
8 收藏

单目测距(视觉测距).zip

发布资源 2021.08.09 ·
zip

multi_lidar_calibrator.zip

发布资源 2021.08.09 ·
zip

Docker容器使用

文章目录开发环境-Docker部署一、Docker安装1、安装2、验证3、设置权限二、导入开发环境加载镜像查看已导入镜像使用镜像生成容器启动容器创建容器终端三、共享显示在宿主机新建终端并运行以下指令2、在Docker容器终端上输入四、docker l3plus 快速启动设置l3plus环境变量l3plus 启动五、docker其他使用导入已有镜像查看容器退出容器终端删除镜像删除容器拷贝文件到docker:在宿主机新建终端并运行以下指令,将l3plus.tar.gz文件拷贝到docker的/root目录下do
原创
发布博客 2021.07.13 ·
701 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

conda的使用

系统软件安装情况说明已更新apt源为清华大学源已安装vim、git、anaconda3.5anaconda3的安装目录为/home/l3/anaconda3anaconda3 python3.6已安装以下功能包:torch==1.5.0torchvision==0.6.0easydict==1.9opencv-python==4.2.0.34numpy==1.18.3torchsummary==1.5.1tensorboard==2.2.1scikit-learn==0.22.2
原创
发布博客 2021.05.28 ·
991 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

串口调试工具

串口调试工具法一:在uboot修改kernel启动参数,将对应串口号修改为调试串口。然后重启,若 超级终端有打印信息即硬件与驱动没问题法二:使用串口进行通信,将两路串口uartX短接,然后使用命令进行测试:数据接收:hexdump /dev/ttymxc1 &数据发送:echo 0x00 > /dev/ttymxc1终端有收到信息即证明硬件与驱动没问题...
原创
发布博客 2021.05.07 ·
608 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

caffe 最大池化 pooling_layer

这里写自定义目录标题caffe 最大池化 pooling_layer原理代码注释参考资料caffe 最大池化 pooling_layer原理首先上理论:池化层是夹在连续的卷积层的中间层,池化层可以非常有效地缩小矩阵的尺寸。从而减少最后全连接层中的参数。使用池化层既可以加快计算速度也有防止过拟合问题的作用。池化层前向传播的过程中也是通过一个类似过滤器的结构完成的,池化层中的计算不是节点的加权和,而是采用了更加简单的最大值或者平均值计算。使用最大值操作的池化层被称之为最大池化层(max pooling
原创
发布博客 2021.04.26 ·
811 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

单目测距 视觉测距

文章目录Apollo3.0单目测距原理代码注释其他-基于相似三角形的单目测距算法原理代码参考资料Apollo3.0单目测距原理主要的思想就是借鉴3D Bounding Box Estimation Using Deep Learning and Geometry论文进行实现。使用yolo进行2D图像目标检测+目标大小姿态估计网络+目标3D中心点解算模块实现单目测距。其中2D目标检测和大小姿态估计Apollo使用caffe框架进行构建深度学习模型,这部分的代码Apollo未开源,不在本文的讨论范围,本
原创
发布博客 2021.04.22 ·
7725 阅读 ·
7 点赞 ·
7 评论 ·
100 收藏

radar_camera_calibration.zip

发布资源 2021.03.03 ·
zip
加载更多