hh1562535601的专栏

学习笔记、心得感想,记录自己的成长历程吧。

LeetCode——Count Complete Tree Nodes

        这个也是讨论区里别人的代码,为免侵权之类的,先在此声明。

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    int countNodes(TreeNode* root) {
    if (!root) return 0;
    if (!root->left && !root->right) return 1;
    int d = 1; // the depth of the tree
    int leaves = 0;
    int dl, dr;
    while (true){
        if (!root->right){
            leaves++;
            break;
        }
        dl = depth(root->left);
        dr = depth(root->right);
        d = max(d, dl+1);
        // like binary search
        if (dl == dr){
            leaves += 1<<dl;
            root = root->right;
        }
        else{
            root = root->left;
        }

    }
    return (1<<d)-1 + leaves;
}

int depth(TreeNode* root){
    int d = -1;
    while (root){
        d+= 1;
        root = root->left;
    }
    return d;
}
};


       代码的基本思路是先计算出(完全二叉树的层数-1),因为完全二叉树只可能最后一层不满,前d层相当于一个满二叉树,无须遍历节点,即可得节点数量为(1<<d)-1,再加上最后一层的节点数量,即为完全二叉树的节点数。所以代码的变量命名其实是不合适的,leaves变量的值不是叶节点的数量;同时代码中还有小技巧:depth函数中d的初值是-1,也就是说,返回的是(深度-1)。最后一层的节点数如何计算呢?若根节点的左右子树深度相同,就说明左子树是满的,其最后一层的节点数量可用数学公式直接计算,再迭代计算右子树的最后一层节点数;若深度不同,则右子树比左子树少一层,完全二叉树最后一层的节点都在左子树上,于是就是沿着左子树向下,直到某个节点的左右子树深度相同,可用公式计算。能这样做都是因为完全二叉树的性质:最后一层的节点必定是从左到右排列。

        循环什么时候退出呢?当遇到一个节点没有右节点的时候。因为此时,这个节点要么是最后一层的叶节点,要么是一个只有左节点的节点(这样的话其左节点即为最后一层的节点),无论哪种情况,都表明我们对此二叉树的二叉搜索完成了,并令 leaves += 1.

        这份代码我觉得思路还是不错的,揣摩了不少时间才堪堪理解。如果有什么理解错误的地方,欢迎批评指正。

阅读更多
文章标签: leetcode c++
个人分类: 数据结构与算法
上一篇堆排序
下一篇LeetCode——Word Break
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭