非极大值抑制(Non-Maximum Suppression)

 

1. 什么是非极大值抑制

非极大值抑制,简称为NMS算法,英文为Non-Maximum Suppression。其思想是搜素局部极大值,抑制非极大值元素。NMS算法在不同应用中的具体实现不太一样,但思想是一样的。非极大值抑制,在计算机视觉任务中得到了广泛的应用,例如边缘检测、人脸检测、目标检测(DPM,YOLO,SSD,Faster R-CNN)等。

2. 为什么要用非极大值抑制

以目标检测为例:目标检测的过程中在同一目标的位置上会产生大量的候选框,这些候选框相互之间可能会有重叠,此时我们需要利用非极大值抑制找到最佳的目标边界框,消除冗余的边界框。Demo如下图:

左图是人脸检测的候选框结果,每个边界框有一个置信度得分(confidence score),如果不使用非极大值抑制,就会有多个候选框出现。右图是使用非极大值抑制之后的结果,符合我们人脸检测的预期结果。

3. 如何使用非极大值抑制

前提:目标边界框列表及其对应的置信度得分列表,设定阈值,阈值用来删除重叠较大的边界框。
IoU:intersection-over-union,即两个边界框的交集部分除以它们的并集。

非极大值抑制的流程如下:

  • 根据置信度得分进行排序
  • 选择置信度最高的比边界框添加到最终输出列表中,将其从边界框列表中删除
  • 计算所有边界框的面积
  • 计算置信度最高的边界框与其它候选框的IoU。
  • 删除IoU大于阈值的边界框
  • 重复上述过程,直至边界框列表为空。

 4. 算法原理

3邻域情况下NMS的实现

  3邻域情况下的NMS即判断一维数组I[W]的元素I[i](2<=i<=W-1)是否大于其左邻元素I[i-1]和右邻元素I[i+1],算法流程如下图所示:

  

  a. 算法流程3-5行判断当前元素是否大于其左邻与右邻元素,如符合条件,该元素即为极大值点。对于极大值点I[i],已知I[i]>I[i+1],故无需对i+1位置元素做进一步处理,直接跳至i+2位置,对应算法流程第12行。

    

  b. 若元素I[i]不满足算法流程第3行判断条件,将其右邻I[i+1]作为极大值候选,对应算法流程第7行。采用单调递增的方式向右查找,直至找到满足I[i]>I[i+1]的元素,若i<=W-1,该点即为极大值点,对应算法流程第10-11行。

    

#!/usr/bin/env python
# -*- coding: utf-8 -*-

# @Time    : 2020/12/20 18:41
# @Author  : HaoWANG
# @Email   : haowanghk@163.com
# @Site    : China, Foshan
# @File    :  nms.py
# @Software:  PyCharm
# @license : (C) Copyright 2018-2021, Jihua Lab. 
# @Desc    :



import cv2
import numpy as np


"""
    Non-max Suppression Algorithm
    @param list  Object candidate bounding boxes
    @param list  Confidence score of bounding boxes
    @param float IoU threshold
    @return Rest boxes after nms operation
"""
def nms(bounding_boxes, confidence_score, threshold):
    # If no bounding boxes, return empty list
    if len(bounding_boxes) == 0:
        return [], []

    # Bounding boxes
    boxes = np.array(bounding_boxes)

    # coordinates of bounding boxes
    start_x = boxes[:, 0]
    start_y = boxes[:, 1]
    end_x = boxes[:, 2]
    end_y = boxes[:, 3]

    # Confidence scores of bounding boxes
    score = np.array(confidence_score)

    # Picked bounding boxes
    picked_boxes = []
    picked_score = []

    # Compute areas of bounding boxes
    areas = (end_x - start_x + 1) * (end_y - start_y + 1)

    # Sort by confidence score of bounding boxes
    order = np.argsort(score)

    # Iterate bounding boxes
    while order.size > 0:
        # The index of largest confidence score
        index = order[-1]

        # Pick the bounding box with largest confidence score
        picked_boxes.append(bounding_boxes[index])
        picked_score.append(confidence_score[index])

        # Compute ordinates of intersection-over-union(IOU)
        x1 = np.maximum(start_x[index], start_x[order[:-1]])
        x2 = np.minimum(end_x[index], end_x[order[:-1]])
        y1 = np.maximum(start_y[index], start_y[order[:-1]])
        y2 = np.minimum(end_y[index], end_y[order[:-1]])

        # Compute areas of intersection-over-union
        w = np.maximum(0.0, x2 - x1 + 1)
        h = np.maximum(0.0, y2 - y1 + 1)
        intersection = w * h

        # Compute the ratio between intersection and union
        ratio = intersection / (areas[index] + areas[order[:-1]] - intersection)

        left = np.where(ratio < threshold)
        order = order[left]

    return picked_boxes, picked_score


# Image name
image_name = 'nms.jpg'

# Bounding boxes
bounding_boxes = [(187, 82, 337, 317), (150, 67, 305, 282), (246, 121, 368, 304)]
confidence_score = [0.9, 0.75, 0.8]

# Read image
image = cv2.imread('pictures/'+image_name)

# Copy image as original
org = image.copy()


# Draw parameters
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 1
thickness = 2

# IoU threshold
threshold = 0.4

# Draw bounding boxes and confidence score
for (start_x, start_y, end_x, end_y), confidence in zip(bounding_boxes, confidence_score):
    (w, h), baseline = cv2.getTextSize(str(confidence), font, font_scale, thickness)
    cv2.rectangle(org, (start_x, start_y - (2 * baseline + 5)), (start_x + w, start_y), (0, 255, 255), -1)
    cv2.rectangle(org, (start_x, start_y), (end_x, end_y), (0, 255, 255), 2)
    cv2.putText(org, str(confidence), (start_x, start_y), font, font_scale, (0, 0, 0), thickness)

# Run non-max suppression algorithm
picked_boxes, picked_score = nms(bounding_boxes, confidence_score, threshold)

# Draw bounding boxes and confidence score after non-maximum supression
for (start_x, start_y, end_x, end_y), confidence in zip(picked_boxes, picked_score):
    (w, h), baseline = cv2.getTextSize(str(confidence), font, font_scale, thickness)
    cv2.rectangle(image, (start_x, start_y - (2 * baseline + 5)), (start_x + w, start_y), (0, 255, 255), -1)
    cv2.rectangle(image, (start_x, start_y), (end_x, end_y), (0, 255, 255), 2)
    cv2.putText(image, str(confidence), (start_x, start_y), font, font_scale, (0, 0, 0), thickness)

# Show image
cv2.imshow('Original', org)
cv2.imshow('NMS', image)
cv2.waitKey(0)

实验结果:

  • 阈值为0.6

  • 阈值为0.5

  • 阈值为0.4

4. 参考资料

https://www.pyimagesearch.com/2014/11/17/non-maximum-suppression-object-detection-python/

https://www.cnblogs.com/liekkas0626/p/5219244.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Techblog of HaoWANG

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值