【Hot 100】208. 实现 Trie (前缀树)

请添加图片描述

  • 🙋‍♂️ 作者:海码007
  • 📜 专栏:算法专栏
  • 💥 标题:【Hot 100】208. 实现 Trie (前缀树)
  • ❣️ 寄语:书到用时方恨少,事非经过不知难!

引言

实现 Trie (前缀树)

  • 🎈 题目链接:
  • 🎈 做题状态:

我的解题

首先需要理解前缀树的定义,前缀树是一颗多叉树,树根不存储字母。每一层可能存储26个不同的字母。然后每一个单词对应这个多叉树的一条路径,并且路径的结尾会标识是单词的结尾。

class Trie {
private:
    bool isEnd;
    Trie* next[26]; //指针数组,有26个小写字母

public:
    Trie() {
        isEnd = false;
        memset(next, 0, sizeof(next));
    }
    
    // 插入一个单词
    void insert(string word) {

        // node指向根节点并向下遍历
        Trie* node = this;
        for (char c : word)
        {
            // 判断当前这个字母是否在当前层存在,如果不存在则创建一个新的树。
            if (node->next[c-'a'] == nullptr)
            {
                node->next[c-'a'] = new Trie();
            }
            node = node->next[c-'a'];   // 继续往下遍历
        }

        // 遍历到末尾后,需要标识 end
        node->isEnd = true;
    }
    
    // 搜索当前单词是否存在,依次比较每个单词是否存在每一层中
    bool search(string word) {
        Trie* node = this;
        for (const char& c : word)
        {
            if (node->next[c-'a'] == nullptr)
            {
                return false;
            }
            node = node->next[c-'a'];
        }

        return node->isEnd; // 遍历到末尾后还需要判断是否是单词的结尾
    }
    
    // 判断这个前缀树是否包含 prefix 这个前缀
    bool startsWith(string prefix) {
        Trie* node = this;
        for (const char& c : prefix)
        {
            if (node->next[c-'a'] == nullptr)
            {
                return false;
            }
            node = node->next[c-'a'];
        }

        return true;
    }
};

/**
 * Your Trie object will be instantiated and called as such:
 * Trie* obj = new Trie();
 * obj->insert(word);
 * bool param_2 = obj->search(word);
 * bool param_3 = obj->startsWith(prefix);
 */

代码解析

该代码实现了一个基本的前缀树(Trie)结构,支持插入、搜索和前缀匹配功能。以下是对代码的详细分析和优化建议:


代码思路分析

  1. 数据结构设计

    • isEnd:标记当前节点是否为单词的结尾。
    • next[26]:一个包含 26 个指针的数组,对应英文小写字母,用于构建字符到子节点的映射。
  2. 核心方法

    • 插入 (insert): 从根节点开始,逐字符向下遍历。若字符对应的子节点不存在,则创建新节点。遍历完成后,标记最后一个节点为单词结尾。
    • 搜索 (search): 检查单词是否存在且最后一个节点被标记为结尾。
    • 前缀匹配 (startsWith): 仅检查路径是否存在,无需判断结尾标记。
  3. 正确性

    • 逻辑正确,符合前缀树的标准实现。
    • 使用 memset 初始化指针数组,确保初始值为 nullptr

优化建议

1. 内存泄漏问题

当前代码未释放动态分配的子节点,导致内存泄漏。需添加析构函数递归释放子节点:

~Trie() {
    for (int i = 0; i < 26; ++i) {
        delete next[i]; // 递归调用子节点的析构函数
    }
}
2. 使用智能指针优化内存管理

改用 std::unique_ptr 管理子节点,避免手动释放内存:

class Trie {
private:
    bool isEnd;
    std::array<std::unique_ptr<Trie>, 26> next; // 使用智能指针

public:
    Trie() : isEnd(false) {} // 无需 memset

    void insert(string word) {
        Trie* node = this;
        for (char c : word) {
            if (!node->next[c - 'a']) {
                node->next[c - 'a'] = std::make_unique<Trie>();
            }
            node = node->next[c - 'a'].get();
        }
        node->isEnd = true;
    }

    // search 和 startsWith 无需修改
};
3. 输入合法性校验(可选)

若需处理非法字符(如大写字母),可在插入/查询前添加校验:

void insert(string word) {
    for (char c : word) {
        if (c < 'a' || c > 'z') {
            throw std::invalid_argument("Invalid character");
        }
    }
    // 原插入逻辑
}
4. 其他优化
  • 空间优化:使用压缩 Trie 树(如 Ternary Search Tree)减少内存占用,但会增加实现复杂度。
  • 性能优化:当前时间复杂度为 O(L)(L 为字符串长度),已是最优,无需调整。

总结

代码逻辑正确,但存在内存泄漏问题。建议通过析构函数或智能指针优化内存管理。其他优化可根据实际需求选择。改进后的代码示例(使用智能指针)如下:

#include <memory>   // 用于智能指针 unique_ptr
#include <array>    // 用于固定大小的数组 array
#include <string>   // 用于字符串操作

class Trie {
private:
    // 标记当前节点是否为某个单词的结尾
    bool isEnd;
    
    // 使用智能指针管理子节点,避免内存泄漏
    // 数组大小为26,对应英文小写字母a-z
    std::array<std::unique_ptr<Trie>, 26> next;

public:
    // 构造函数:初始化 isEnd 为 false,表示初始时不是单词结尾
    // 智能指针数组 next 会自动初始化为 nullptr
    Trie() : isEnd(false) { }
    
    /**
     * 插入一个单词到 Trie 树中
     * @param word 待插入的单词
     */
    void insert(const std::string& word) {
        // 从根节点(this)开始遍历
        Trie* node = this;
        
        // 逐个字符处理
        for (char c : word) {
            // 计算字符对应的索引(a->0, b->1, ..., z->25)
            int idx = c - 'a';
            
            // 如果当前字符的子节点不存在,则创建新节点
            if (node->next[idx] == nullptr) {
                node->next[idx] = std::make_unique<Trie>();
            }
            
            // 移动到子节点继续处理
            node = node->next[idx].get();  // get() 获取裸指针
        }
        
        // 标记单词的最后一个字符节点为结尾
        node->isEnd = true;
    }
    
    /**
     * 搜索 Trie 树中是否存在某个单词
     * @param word 待搜索的单词
     * @return 如果单词存在且完整匹配(最后一个字符是结尾),返回 true;否则返回 false
     */
    bool search(const std::string& word) {
        // 从根节点开始遍历
        Trie* node = this;
        
        // 逐个字符检查
        for (const char& c : word) {
            int idx = c - 'a';
            
            // 如果当前字符的子节点不存在,说明单词不存在
            if (node->next[idx] == nullptr) {
                return false;
            }
            
            // 移动到子节点继续检查
            node = node->next[idx].get();
        }
        
        // 检查最后一个字符是否被标记为单词结尾
        return node->isEnd;
    }
    
    /**
     * 检查 Trie 树中是否存在某个前缀
     * @param prefix 待检查的前缀
     * @return 如果前缀存在(不要求是完整单词),返回 true;否则返回 false
     */
    bool startsWith(const std::string& prefix) {
        // 从根节点开始遍历
        Trie* node = this;
        
        // 逐个字符检查
        for (const char& c : prefix) {
            int idx = c - 'a';
            
            // 如果当前字符的子节点不存在,说明前缀不存在
            if (node->next[idx] == nullptr) {
                return false;
            }
            
            // 移动到子节点继续检查
            node = node->next[idx].get();
        }
        
        // 只要路径存在,无论是否是单词结尾,都返回 true
        return true;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值